Math, asked by Ishikaaa4444, 1 year ago

Find x if 5^x+15 (5^0)+5^2+4 (5^x)=665

Answers

Answered by bbarik
13
Hope that helps you.....
Attachments:
Answered by pulakmath007
2

The value of x = 3

Given :

\displaystyle \sf{ {5}^{x}  + 15( {5}^{0} ) +  {5}^{2}  + 4 ({5}^{x})  = 665}

To find :

The value of x

Solution :

Step 1 of 2 :

Write down the given equation

Here the given equation is

\displaystyle \sf{ {5}^{x}  + 15( {5}^{0} ) +  {5}^{2}  + 4 ({5}^{x})  = 665}

Step 2 of 2 :

Find the value of x

\displaystyle \sf{ {5}^{x}  + 15( {5}^{0} ) +  {5}^{2}  + 4 ({5}^{x})  = 665}

\displaystyle \sf{ \implies {5}^{x}  + (15 \times 1) +  25  + 4 ({5}^{x})  = 665}

\displaystyle \sf{ \implies {5}^{x}  + 15 +  25  + 4 ({5}^{x})  = 665}

\displaystyle \sf{ \implies {5}^{x}  + 40+ 4 ({5}^{x})  = 665}

\displaystyle \sf{ \implies {5}^{x}  +4 ({5}^{x})  = 665 - 40}

\displaystyle \sf{ \implies 5 ({5}^{x})  = 625}

\displaystyle \sf{ \implies  {5}^{1} \times  {5}^{x}  = 5 \times 5 \times 5 \times 5}

\displaystyle \sf{ \implies  {5}^{x + 1}   =  {5}^{4} }

\displaystyle \sf{ \implies x + 1 = 4}

\displaystyle \sf{ \implies x  = 4 - 1}

\displaystyle \sf{ \implies x  = 3}

Hence the required value of x = 3

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

2. If 2x× 4x=(8)1/3 × (32)1/5 ,then find the value of x

https://brainly.in/question/14155738

Similar questions