Math, asked by mmgbisht, 1 month ago

find x if 6^2x divided 6^-4 = 36

Answers

Answered by Anonymous
92

Answer:

x = -1

Step-by-step explanation:

We know that,

 \huge{   \mathfrak\color{violet}{{a}^{m}  \div  {a}^{n}  =  {a}^{m - n}}  }

  \:  \:  \:  \:  \sf{\large{ {6}^{2x} \div  {6}^{ - 4} = 36  } }\\ \\ \sf\large\Rightarrow{6}^{2x - ( - 4)}  = 36  \\   \\ \sf\large\Rightarrow \:  \:  \:  \:  \: {6}^{2x + 4}  =  {6}^{2} \\ \\  \sf\large\Rightarrow \:   \: \:  2x + 4 = 2 \:  \:  \\ \\\sf \large\Rightarrow \:  \:  \:   \: 2 x = 2 - 4 \\ \\ \sf\large\Rightarrow \:  \:  \:  \:  2x =  - 2  \:  \:  \:  \: \\ \\ \sf\large\Rightarrow  \:  \:  \:  \:  \:  \: x =  \frac{ - 2}{2}  \: \:  \: \\   \\ \sf\large \pink{   \:  \:  \: \therefore \: \color{lightgreen}{x =  - 1}}

 \huge{  \pink{N}\mathfrak \color{purple}{ot{ \pink e } }} :   \color{black}{ - }

 \large{ \mathfrak \color{orange}{ if \:  \:  \: {a}^{m}  =  {a}^{n}  , \:  \:then \:  \:  m = n}}

Answered by bhumiraj1234
0

Step-by-step explanation:

 \frac{6 {}^{2x} }{6 {}^{ - 4} }  = 36

 =  >  \frac{6 {}^{2x} }{6 {}^{ - 4} }  = 6 {}^{2}

 =  > 6 {}^{2x + 4}  = 6 {}^{2}

base are same so we will compare the powers.

 =  >  2x + 4 = 2

 =  > 2x = 2 - 4

2x =  - 2

 =  > x =   \frac{ - 2}{2}

 =  > x =  - 1

Similar questions