Physics, asked by huntersuber096, 2 months ago

Find x if distance between points L(x,7) and M(1, 15 is 10 ?​

Answers

Answered by Anonymous
3

Answer:

refer to this image hope it will help you

Attachments:
Answered by NewGeneEinstein
3

Distance formula:-

\boxed{\sf \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}

\\ \sf\longmapsto  \sqrt{ {(1 - x) }^{2}  + ( {15 - 7)}^{2} }  = 10 \\ \\ \sf\longmapsto  \sqrt{1 - 2x +  {x}^{2}  +  {8}^{2} }  = 10 \\ \\ \sf\longmapsto  \sqrt{1 - 2x +  {x}^{2}  + 64} = 10 \\ \\ \sf\longmapsto  \sqrt{ {x}^{2}  - 2x = 65}  = 10 \\ \\ \sf\longmapsto  {x}^{2}  - 2x + 65 = 10 {}^{2}  \\ \\ \sf\longmapsto  {x}^{2}  - 2x + 65 = 100 \\ \\ \sf\longmapsto  {x}^{2}  - 2x = 100  - 65 \\  \\ \sf\longmapsto  {x}^{2}  - 2x = 35 \\  \\ \sf\longmapsto  {x}^{2}  - 2x - 35 = 0 \\  \\ \sf\longmapsto  {x}^{2}  + 5x  - 7x + 35 = 0 \\  \\ \sf\longmapsto x(x + 5) - 7(x + 5) = 0 \\  \\ \sf\longmapsto (x + 5)(x - 7 )= 0 \\  \\ \sf\longmapsto (x + 5) = 0 \: or \: (x - 7) = 0 \\  \\ \sf\longmapsto x =  - 5 \:or \: x = 7

Similar questions