Math, asked by AnuragDhongade, 11 months ago

find x if f(x)=g(x) where f(x)=√x-3;g(x)=5-x​

Answers

Answered by snehath63
5

Step-by-step explanation:

f(x)=g(x)

√x-3=5-x

x-3=(5-3)^2

x=25-10x+x^2+3

0=28-10x+x^2-x

0=28-11x+x^2

0=28-(4+7)+x^2

0=28-4x-7x+x^2

0=4(7-x)-x(7-x)

0=(7-x)(4-x)

Either,

x=7

OR,

x=4

Answered by pinquancaro
6

The value of x is 4 or 7.

Step-by-step explanation:

Given : If f(x)=g(x) where f(x)=\sqrt{x-3}\ ;\ g(x)=5-x .

To find : The value of x ?

Solution :

f(x)=\sqrt{x-3}\ ;\ g(x)=5-x

f(x)=g(x)

Substitute the value,

\sqrt{x-3}=5-x

Squaring both side,

(\sqrt{x-3})^2=(5-x)^2

x-3=25+x^2-10x

25+x^2-10x-x+3=0

x^2-11x+28=0

Applying middle term split,

x^2-4x-7x+28=0

x(x-4)-7(x-4)=0

(x-4)(x-7)=0

x=4,7

Therefore, the value of x is 4 or 7.

#Learn more

F(x) = x-6, g(x) = x² find f o g and g o f​

https://brainly.in/question/10268103

Similar questions