Math, asked by miteshgajjar2005, 9 months ago

Find x, if sin 3x = cos (x – 30°), 0  3x  90°.​

Answers

Answered by shadowsabers03
19

Given,

\longrightarrow\sin(3x)=\cos(x-30^o)

Since \sin\theta=\cos(90^o-\theta),

\longrightarrow\cos(90^o-3x)=\cos(x-30^o)

Taking cos inverse,

\longrightarrow 90^o-3x=x-30^o

\longrightarrow4x=120^o

\longrightarrow\underline{\underline{x=30^o}}

where 3x=90^o\in[0^0,\ 90^o].

Let's check if it's true.

\longrightarrow \sin(3x)=\sin(3\times30^o)=\sin90^o=1

\longrightarrow \cos(x-30^o)=\cos(30^o-30^o)=\cos0^o=1

Therefore,

\longrightarrow\sin(3x)=\cos(x-30^o)

Hence it's true.

Answered by mehul13bafna
1

Answer:

30⁰ is correct

Step-by-step explanation:

sin 3x = cos(x-30⁰)

sin 3x = sin [90⁰-(x-30⁰)] [sin x = cos(90⁰-x)]

3x = -x+120⁰

4x = 120⁰

x = 30⁰

Similar questions