Math, asked by Remin7765, 1 year ago

Find x if tan^-1 (x+2) + tan^-1 (x-2)=tan^-1(8/79)

Answers

Answered by MaheswariS
26

Answer:

\mathsf{x=\frac{1}{4}}

Step-by-step explanation:

\textsf{Given:}

\mathsf{tan^{-1}(x+2)+tan^{-1}(x+2)=tan^{-1}(\frac{8}{79})}

\textsf{Using the formula}

\boxed{\mathsf{tan^{-1}x+tan^{-1}y=tan^{-1}(\frac{x+y}{1-xy})}}

\displaystyle\mathsf{tan^{-1}(\frac{x+2+x-2}{1-(x+2)(x+2)})=tan^{-1}\frac{8}{79}}

\displaystyle\mathsf{tan^{-1}(\frac{2x}{1-(x^2-2^2)})=tan^{-1}\frac{8}{79}}

\displaystyle\mathsf{\frac{2x}{1-x^2+4}=\frac{8}{79}}

\displaystyle\mathsf{\frac{x}{-x^2+5}=\frac{4}{79}}

\displaystyle\mathsf{\frac{x}{-x^2+5}=\frac{4}{79}}

\mathsf{79x=-4x^2+20}

\mathsf{4x^2+79x-20=0}

\mathsf{(x+20)(4x-1)=0}

\implies\mathsf{x=-20,\frac{1}{4}}

\textsf{But x cannot be negative}

\implies\boxed{\mathsf{x=\frac{1}{4}}}

Similar questions