Math, asked by ministermonkeyA1, 4 months ago

Find x, if the angles of a triangle are :
(ii) x°, 2x°, 2x
(iii) 2x, 4X, 6x
(tell how you did it with workings)​

Answers

Answered by Anonymous
5

Answer :-

  • x in (i) is 36°.
  • x in (ii) is 15°

Given :-

Angles of the triangle :-

  1. (ii) x°, 2x°, 2x
  2. (iii) 2x, 4X, 6x

To find :-

  • The value of x.

Solution :-

We know that,

  • Sum of angles of the triangle = 180°.

(i) x + 2x + 2x = 180

➝ 5x = 180

➝ x = 180/5

➝ x = 36°.

Therefore, Angles of the triangle are :-

  1. 1st angle = 36°.
  2. 2nd angle = 72°.
  3. 3rd angle = 72°.

(ii) 2x + 4x + 6x = 180°

➝ 12x = 180°

➝ x = 180/12.

➝ x = 15°

Therefore, Angles of the triangle are :-

  1. 1st angle = 30°.(x × 2)
  2. 2nd angle = 60°.(x × 4)
  3. 3rd angle = 90°.(x × 6)
Answered by Anonymous
6

AnswEr-:

  1. \longrightarrow {\mathrm{The\:value \:of\:x\;  = 36^{⁰}}}\\\\
  2. \longrightarrow {\mathrm{The\:value \:of\:x\;  = 15^{⁰}}}

Explanation-:

\mathrm{Given-:}

  • Interior angles of triangles-:

  • (ii) x°, 2x°, 2x⁰
  • (iii) 2x⁰, 4x⁰, 6x⁰

\mathrm{To\: Find-:}

  • The Value of x .

\dag {\mathrm {Solution \:of\:Question \:-:}}

As, We know that,

  • \dag{\underline {\mathrm{Total \:Sum\:of\:interior \:angle \:of\:Triangle\:is\:180^{⁰}}}}

Or ,

  • \dag{\underline {\mathrm{\angle A + \angle B + \angle C = 180^{⁰}}}} ______[ Formula 1]

________________________________

  • Solution of (i) -:

  • Angle A = x⁰

  • Angle B = 2x

  • Angle C = 2x

  • Now , By putting known Values in Formula 1 or Formula of sum of angle of triangle-:

  • \longrightarrow {\mathrm{x^{⁰} + 2x^{⁰} + 2x^{⁰}  = 180^{⁰}}}

  • \longrightarrow {\mathrm{ 5x^{⁰}  = 180^{⁰}}}

  • \longrightarrow {\mathrm{ x  = \dfrac{\cancel {180}}{\cancel {5}}}}

  • \longrightarrow {\mathrm{ x  = 36^{⁰}}}

Therefore ,

  • \longrightarrow {\mathrm{The\:value \:of\:x\;  = 36^{⁰}}}

Putting x = 36 -:

  • Angle A = x⁰ = 36
  • Angle B = 2x⁰ = 2 × 36⁰ = 72

  • Angle C = 2x⁰ = 2 × 36⁰ = 72

_________________________________________

  • Solution of (ii) -:

  • Angle A = 2x

  • Angle B = 4x

  • Angle C = 6x

Now , By putting known Values in Formula 1 or Formula of sum of angle of triangle-:

  • \longrightarrow {\mathrm{2x^{⁰} + 4x^{⁰} + 6x^{⁰}  = 180^{⁰}}}

  • \longrightarrow {\mathrm{ 12x^{⁰}  = 180^{⁰}}}

  • \longrightarrow {\mathrm{ x  = \dfrac{\cancel {180}}{\cancel {12}}}}

  • \longrightarrow {\mathrm{ x  = 15^{⁰}}}

Therefore ,

  • \longrightarrow {\mathrm{The\:value \:of\:x\;  = 15^{⁰}}}

Putting x = 15 -:

  • Angle A = 2x⁰ = 2 × 15 = 30

  • Angle B = 4x⁰ = 4 × 15⁰ = 60

  • Angle C = 6x⁰ = 6 × 36⁰ = 90

_______________________________

Hence ,

  1. \longrightarrow {\mathrm{The\:value \:of\:x\;  = 36^{⁰}}}\\\\
  2. \longrightarrow {\mathrm{The\:value \:of\:x\;  = 15^{⁰}}}

____________________________________________

Similar questions