Math, asked by InfinitySpider, 10 months ago

find x if (x-4/x-5) + (x-6/x-7) = 10/3

Answers

Answered by mansurijishan805
1

Step-by-step explanation:

 {x}^{2} ( \frac{x - 4}{x - 5}  )+ ( \frac{x - 6}{x - 7} ) =  \frac{10}{3}  \\  \frac{(x - 4)(x - 7) + (x - 6)(x - 5)}{(x - 5)(x - 7)}  =  \frac{10}{3}  \\  \frac{ {x}^{2}  - 7x +  - 4x + 28 +  {x}^{2}  - 5x  - 6x + 30}{ {x}^{2}  - 7x - 5x + 35}   =  \frac{10}{3}  \\   \frac{2 {x}^{2}  - 22x + 58}{ {x}^{2}  - 11x + 35}  =  \frac{10}{3}............eq(1)  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  2\\   {x}^{2} - 11x + 35 \sqrt{2{x}^{2}  - 22x + 58} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:     - (2 {x}^{2}  - 22x + 70 ) \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ........................... \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - 28 \\ \frac{ {2x}^{2}  - 22x + 58}{ {x}^{2}  - 11x + 35}  = 2( {x}^{2}  - 11x + 35)  - 28.............eq(2) \\ put \: the \: value \: of \: eq(2) \: in \: eq(1) \\ 2( {x}^{2}  - 11x + 35) - 28 =  \frac{10}{3}  \\  2( {x}^{2}  - 11x  + 35) =  \frac{10}{ 3}  + 28 =  \frac{10 +84}{3}  =  \frac{94}{ 3 }  \\  {x}^{2}  - 11x  + 35  =  \frac{94}{3}  \times  \frac{1}{2}  =  \frac{47}{3}  \\  {x}^{2}  - 11x + 35 -  \frac{47}{3}  = 0 \\  \frac{3 {x}^{2} - 33  x + 35  - 47}{3}  =0 \\ 3 {x}^{2}  - 33x - 12 = 0  \\ devided \: by \: 3 \:  \\  {x}^{2}  - 11x - 4 = 0 \\

Similar questions