Math, asked by alex6510, 1 year ago

Find x if x+ x^2 + x^3 + x^4 ... infinity = 2/3 for [ -1 < x < 1]​

Answers

Answered by BraɪnlyRoмan
24
\huge \boxed{ \underline{ \underline{ \bf{Answer}}}}


 \boxed{ \underline{ \sf{GIVEN : }}}


x \: + \: {x}^{2} \: + \: {x}^{3} + \: {x}^{4} \: ... \: \infty \: = \: \frac{2}{3}

where (-1 < x < 1)


 \boxed{ \underline{ \sf{TO \: FIND : \: x }}}


 \boxed{ \underline{ \sf{SOLUTION : }}}


As the sequence is in G.P ,so the formula for {S}_{\infty} \: = \: \frac{a}{1 - r}.

a = x , r =  \frac{ {x}^{2} }{x} = x


A/Q,

 \implies \: S_{ \infty} \: = \: \frac{2}{3}

 \implies \: \frac{a}{1 - r} \: = \: \frac{2}{3}

 \implies \: \frac{x}{1 - x} = \frac{2}{3}

 \implies \: 2(1 - x) \: = \: 3x

 \implies \: 2 - 2x \: = \: 3x

 \implies \: 5x = 2

 \implies \: x \: = \: \frac{2}{5}


 \boxed{ \sf{ \bf{ \therefore \: x = \frac{2}{5} }}}
Answered by Anonymous
5
\mathcal{\red{\huge{Heya\:mate\:!!}}}

\mathtt{Here\:is\:ur\:@nswer}

✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

\textsf{\pink{Q.}}Find x if x+ x^2 + x^3 + x^4 ... infinity = 2/3 for [ -1 < x < 1]​

\textsf{\pink{Ans.}}
\bold{ Step-by-step\: explanation\::-}

{1 - r}= 2/3

{x}{1 - x} = 2/3

2(1 - x) =3x

2 - 2x =  3x

OR  5x = 2

 OR x = 2/5

THUS X = 2/5

✶⊶⊷⊶⊷⊷⊶⊷ ❍⊷⊶⊷⊶⊷⊶⊷✶

\mathcal{\red{\huge {Hope\:it\:helps}}}✯✯✯
Similar questions