Math, asked by tamsrinivas, 8 months ago

Find x in 3x - 2(x+3)/3 = 16 - (x+2)/2

Answers

Answered by shaadwali02
9

Answer:

Hope it may help you.....

Attachments:
Answered by mysticd
3

 Given\: simple \: equation :

 3x - \frac{2(x+3)}{3} = 16 - \frac{(x+2)}{2}

 Find \:the \: L.C.M \:of \: denominators \:3

 and \: 2

 L.C.M (3,2) = 6

/* Multiplying equation by 6 , we get */

\implies 6\Big( 3x - \frac{2(x+3)}{3} \Big)=6\Big( 16 - \frac{(x+2)}{2}\Big)

\implies  18x - \frac{6 \times 2(x+3)}{3} = 96 - 6 \times \frac{(x+2)}{2}

 \implies 18x - 2\times 2(x+3) = 96 - 3(x+2)

 \implies 18x - 4(x+3) = 96 - 3x - 6

 \implies 18x - 4x - 12 = 90 - 3x

\implies 14x + 3x = 90 + 12

\implies 17x = 102

\implies x = \frac{102}{17}

 \implies x = 6

Therefore.,

 \red{ Value \:of \:x } \green {= 6}

•••♪

Similar questions