Math, asked by elkashjunior, 2 months ago

Find x in log2 256 x²= 1+2log2(1/2x⁴​)

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm :\longmapsto\: log_{2}(256 {x}^{2} ) = 1 + 2 log_{2} \bigg( \dfrac{1}{2 {x}^{4} } \bigg)

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:value \: of \: x

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: log_{2}(256 {x}^{2} ) = 1 + 2 log_{2} \bigg( \dfrac{1}{2 {x}^{4} } \bigg)

\rm :\longmapsto\: log_{2}(256 {x}^{2} ) =  log_{2}(2)  + 2 log_{2} \bigg( \dfrac{1}{2 {x}^{4} } \bigg)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \:  log_{a}(a) = 1 }}

\rm :\longmapsto\: log_{2}(256 {x}^{2} ) =  log_{2}(2)  + log_{2} \bigg( \dfrac{1}{2 {x}^{4} } \bigg)^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \: log( {x}^{y} ) = y log(x) }}

\rm :\longmapsto\: log_{2}(256 {x}^{2} ) =  log_{2}(2)  + log_{2} \bigg( \dfrac{1}{4 {x}^{8} } \bigg)

\rm :\longmapsto\: log_{2}(256 {x}^{2} ) = log_{2} \bigg(2 \times  \dfrac{1}{4 {x}^{8} } \bigg)

 \:  \:  \:  \:  \:  \:  \: \green{\boxed{ \bf \because \:  log_{a}(x) +  log_{a}(y) =  log_{a}(xy)}}

\rm :\longmapsto\: log_{2}(256 {x}^{2} ) = log_{2} \bigg(\dfrac{1}{2{x}^{8} } \bigg)

\rm :\longmapsto\: 256 {x}^{2} = \dfrac{1}{2{x}^{8} }

\rm :\longmapsto\: {x}^{10} = \dfrac{1}{512}

\rm :\longmapsto\: {x}^{10} = \dfrac{1}{ {2}^{9} }

\bf\implies \:x \:  =  \:  \pm \: \bigg(\dfrac{1}{2} \bigg)^{ \dfrac{9}{10} }

Additional information :-

\rm :\longmapsto\: log(xy) = logx \:  +  \: logy

\rm :\longmapsto\: log_{x}(y) = \dfrac{logy}{logx}

\rm :\longmapsto\: log_{x}(y) = \dfrac{1}{ log_{y}(x) }

\rm :\longmapsto\: log_{ {x}^{p} } {x}^{q}  = \dfrac{q}{p}

Similar questions