Math, asked by miniarora2017, 2 months ago

find x in the following​

Attachments:

Answers

Answered by MrHyper
132

\huge\rm\green{answeR:}

{}

\bf{{\underline{Given}}:}

  • \sf{OD~is~the~bisector~of~∠BOC}

\sf\implies{∠BOD=∠COD=x}

\bf{{\underline{To~find}}:}

  • \sf{The~value~of~~‛x’}

\sf{~~~~~~~~~~ ∠COD+∠BOD+∠BOF=180°~~~~(Straight~line)}

\sf\implies{x+x+20=180}

\sf\implies{2x+20=180}

\sf\implies{2x=180-20}

\sf\implies{2x=160}

\sf\implies{x={\dfrac{160}{2}}}

\sf\implies{x={\green{\underline{\boxed{\bf 80°}}}}}

\bf\therefore{{\underline{Required~answer}}:}

  • \sf{x={\green{\underline{\boxed{\bf 80°}}}}}
Answered by susmita2891
15

{\huge{\red{\boxed{\green{\boxed{\blue{\boxed{\orange{\boxed{\pink{\boxed{\mathcal\purple{Answer}}}}}}}}}}}}}

Given :

OD \:is \:the \:bisector \:of \:∠BOC

⟹BOD=∠COD=x

To \:find :

The \:value \:of  \:‛x’

∠COD+∠BOD+∠BOF=180°    (Straight line)

⟹x+x+20=180

⟹2x+20=180

⟹2x=180−20

⟹2x=160

⟹x= 160/2

⟹x= 80°

Similar questions