Math, asked by madeehaanees111006, 9 months ago

find x in this fig
Last figure I couldn't edit
Plz answer and ur answer BRAINLIEST for sure ​

Attachments:

Answers

Answered by Anonymous
22

GIVEN:-

  • \rm{ \angle{ACB} = 30^{\circ}\angle{CAB} = 34^{\circ}}

  • \rm{ \angle{EDB} = 45^{\circ}}

TO FIND:-

  • The Value of x.

CONCEPT USED:-

  • Exterior angle Property - The sum of two interior opposite angle is equal to Exterior angle.

Now,

\implies\rm{ \angle{ACB} +\angle{CAB} = \angle{CBD}}( Exterior angle)

\implies\rm{ 30^{\circ} + 34^{\circ} = \angle{CBD}}

\implies\rm{ \angle{CBD} = 64^{\circ}}.

Again,

\implies\rm{\angle{EBD} + \angle{EDB} = x}(Exterior angle)

\implies\rm{ 64^{\circ} + 45^{\circ} = x^{\circ}}

\implies\rm{ x^{\circ} = 109^{\circ}}.

Hence, The Value of is 109°.

Answered by Anonymous
18

ANSWER

\large\underline\bold{GIVEN,}

\sf{ \angle{ACB} = 30 \degree \angle{CAB} = 34 \degree}

\sf{ \angle{EDB} = 45\degree}

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow angle\:"x"

\large\underline\bold{SOLUTION,,}

ACCORDING TO THE QUESTION,

property in use,

\sf{\boxed{\sf{The \:sum \:of \:two\: interior \:opposite\: angle \:is\: equal \:to\: Exterior\: angle.}}}

\implies\sf{ \angle{ACB} +\angle{CAB} = \angle{CBD}.......^{exterior\:angles}}

\implies\sf{ 30\degree+ 34 \degree = \angle{CBD}}

\implies\sf{ \angle{CBD} = 64\degree}.

\sf{\boxed{\sf{\therefore \angle{CBD} = 64 \degree }}}

we got the value of angle ∠CBD .

NOW,

\sf\therefore FOR\:FINDING\:ANGLE\:X,

\implies\sf{\angle{EBD} + \angle{EDB} = x.............^{exterior\:angle\:property.}}

\implies\sf{ 64\degree + 45\degree = x \degree}

\implies\sf{ 109\degree =x\degree }.

\implies\sf{ x\degree = 109\degree}.

\large{\boxed{\bf{ x= 109\degree}}}

___________________________

Similar questions