Math, asked by prajwallakra05, 1 month ago

find x :
Maths - logarithms​

Attachments:

Answers

Answered by abhradeepde
1

Answer:

x = 10

Step-by-step explanation:

 {5}^{ log(x) }  +  {3}^{ log(x) }  =  {3}^{ log(x)  + 1}  -  {5}^{  log(x - 1)  }  \\  =  > {5}^{ log(x) } + {5}^{  log(x )  - 1 } = {3}^{ log(x) + 1 } - {3}^{ log(x) } \\  =  > {5}^{ log(x) }  + {5}^{ log(x) } \times  \frac{1}{5}  = 3 \times  {3}^{ log(x) } - {3}^{ log(x) } \\  = > {5}^{ log(x) }(1 +  \frac{1}{5} ) = {3}^{ log(x) }(3 - 1) \\  =  > {5}^{ log(x) } \times  \frac{6}{5}  = {3}^{ log(x) } \times 2 \\  =  > { (\frac{5}{3} )}^{ log(x) } = 2 \times \frac{5}{6}  \\  =  > { (\frac{5}{3} )}^{ log(x) } =  \frac{5}{3}  \\  =  >  log(x)  = 1 \\  =  > x = 10

Similar questions