Math, asked by ayushisharmarocks589, 4 months ago

Find X, pm Y=[ matrix 3&2\\ 1&4 matrix ] 2X+Y=[ matrix 1&0\\ -3&2 matrix ] and​

Answers

Answered by TheValkyrie
15

Question:

\sf Find\:X\:if, Y=\left[\begin{array}{cc}3&2\\1&4\end{array}\right] ,2X+Y=\left[\begin{array}{cc}1&0\\-3&2\end{array}\right]

Answer:

\sf X=\left[\begin{array}{cc}-1&-1\\-2&-1\end{array}\right]

Step-by-step explanation:

Given:

\sf Y=\left[\begin{array}{cc}3&2\\1&4\end{array}\right]

\sf 2X+Y=\left[\begin{array}{cc}1&0\\-3&2\end{array}\right]

To Find:

The matrix X

Solution:

Here we have to find the matrix Y given matrices Y and 2X + Y.

Subtracting matrix Y from matrix 2X + Y we get,

\sf 2X+Y-Y=\left[\begin{array}{cc}1&0\\-3&2\end{array}\right]-\left[\begin{array}{cc}3&2\\1&4\end{array}\right]

\sf 2X=\left[\begin{array}{cc}1-3&0-2\\-3-1&2-4\end{array}\right]

\sf 2X=\left[\begin{array}{ccc}-2&-2\\-4&-2\end{array}\right]

Dividing by 2 on both sides we get,

\sf \dfrac{2X}{2} =\left[\begin{array}{cc}-2&-2\\-4&-2\end{array}\right] \div2

\sf X=\left[\begin{array}{cc}-2/2&-2/2\\-4/2&-2/2\end{array}\right]

\sf X=\left[\begin{array}{cc}-1&-1\\-2&-1\end{array}\right]

Therefore this is the matrix X.


MystícPhoeníx: Awesome Sisi :p
TheValkyrie: Thank you :p
Asterinn: Nice !
Anonymous: Perfect answer dii ☺️
TheValkyrie: Thank you all!
Anonymous: Stupendous answer !
QueenOfStars: Exquisite! :D
Answered by balendradubey5bd
21

Answer:

Question:

\begin{gathered}\sf Find\:X\:if, Y=\left[\begin{array}{cc}3&amp;2\\1&amp;4\end{array}\right] ,2X+Y=\left[\begin{array}{cc}1&amp;0\\-3&amp;2\end{array}\right]\end{gathered} </p><p>FindXif,Y=[ .

3</p><p>1</p><p>	</p><p>  </p><p>2</p><p>4</p><p>	</p><p> ],2X+Y=[ </p><p>1</p><p>−3</p><p>	</p><p>  </p><p>0</p><p>2</p><p>	</p><p> ]</p><p>	</p><p> </p><p>

answer

\begin{gathered}\sf X=\left[\begin{array}{cc}-1&amp;-1\\-2&amp;-1\end{array}\right]\end{gathered} </p><p>X=[ </p><p>−1</p><p>−2</p><p>	</p><p>  </p><p>−1</p><p>−1</p><p>	</p><p> ]

Step-by-step explanation:</p><p></p><p>Given:</p><p>

</p><p>\begin{gathered}\sf Y=\left[\begin{array}{cc}3&amp;2\\1&amp;4\end{array}\right]\end{gathered} </p><p>Y=[ </p><p>3</p><p>1</p><p>	</p><p>  </p><p>2</p><p>4</p><p>	</p><p> ]</p><p>

\begin{gathered}\sf 2X+Y=\left[\begin{array}{cc}1&amp;0\\-3&amp;2\end{array}\right]\end{gathered} </p><p>2X+Y=[ </p><p>1</p><p>−3</p><p>	</p><p>  </p><p>0</p><p>2</p><p>	</p><p> ]</p><p>	</p><p> </p><p></p><p>

Step-by-step explanation:

To Find:</p><p></p><p>The matrix X</p><p></p><p>Solution:</p><p></p><p>Here we have to find the matrix Y given matrices Y and 2X + Y.</p><p></p><p>Subtracting matrix Y from matrix 2X + Y we get,</p><p></p><p>\begin{gathered}\sf 2X+Y-Y=\left[\begin{array}{cc}1&amp;0To Find:</p><p></p><p>The matrix X</p><p></p><p>Solution:</p><p></p><p>Here we have to find the matrix Y given matrices Y and 2X + Y.</p><p></p><p>Subtracting matrix Y from matrix 2X + Y we get,</p><p></p><p>

\begin{gathered}\sf 2X+Y-Y=\left[\begin{array}{cc}1&amp;0\\-3&amp;2\end{array}\right]-\left[\begin{array}{cc}3&amp;2\\1&amp;4\end{array}\right]\end{gathered}


QueenOfStars: Nice! :)
balendradubey5bd: Thx :)
Similar questions