Math, asked by yuvrajsehgal000999, 2 days ago

Find x so that [(1/3) ^ - 3 * (1/3) ^ 7 = (1/3) ^ (2x - 1)]​

Answers

Answered by ashokfarsanmart
0

Answer:

Answer:(1/3)^-5+7×-1 (1/3)^2×-1mark me as brainliest

Answered by s1050bargav21779
0

Answer:

The value of x is \mathbf{\frac{3}{2}}

2

3

Step-by-step explanation:

Given data

\mathbf{\left ( \frac{1}{3} \right )^{-5}\times \left ( \frac{1}{3} \right )^{7}=\left ( \frac{1}{3} \right )^{2x-1}}(

3

1

)

−5

×(

3

1

)

7

=(

3

1

)

2x−1

Exponent will add on multiplication of same base

\mathbf{\left ( \frac{1}{3} \right )^{-5+7}=\left ( \frac{1}{3} \right )^{2x-1}}(

3

1

)

−5+7

=(

3

1

)

2x−1

\mathbf{\left ( \frac{1}{3} \right )^{2}=\left ( \frac{1}{3} \right )^{2x-1}}(

3

1

)

2

=(

3

1

)

2x−1

On comparing the exponent on both side

2 x -1 = 2

2 x = 2 +1

2 x = 3

So

\mathbf{x=\frac{3}{2}}x=

2

3

Answer

Similar questions