Find x so that [(1/3) ^ - 3 * (1/3) ^ 7 = (1/3) ^ (2x - 1)]
Answers
Answered by
0
Answer:
Answer:(1/3)^-5+7×-1 (1/3)^2×-1mark me as brainliest
Answered by
0
Answer:
The value of x is \mathbf{\frac{3}{2}}
2
3
Step-by-step explanation:
Given data
\mathbf{\left ( \frac{1}{3} \right )^{-5}\times \left ( \frac{1}{3} \right )^{7}=\left ( \frac{1}{3} \right )^{2x-1}}(
3
1
)
−5
×(
3
1
)
7
=(
3
1
)
2x−1
Exponent will add on multiplication of same base
\mathbf{\left ( \frac{1}{3} \right )^{-5+7}=\left ( \frac{1}{3} \right )^{2x-1}}(
3
1
)
−5+7
=(
3
1
)
2x−1
\mathbf{\left ( \frac{1}{3} \right )^{2}=\left ( \frac{1}{3} \right )^{2x-1}}(
3
1
)
2
=(
3
1
)
2x−1
On comparing the exponent on both side
2 x -1 = 2
2 x = 2 +1
2 x = 3
So
\mathbf{x=\frac{3}{2}}x=
2
3
Answer
Similar questions