Math, asked by VijayaLaxmiMehra1, 1 year ago

Find x, so that 2x + 1, x^2 + x + 1, and 3x^2 - 3x + 3 are in AP.

Answers

Answered by Anonymous
28
\underline{\mathfrak{Solution : }}

\mathsf{Let,} \\ \\<br /><br />\mathsf{ \implies 2x \: + \: 1 \: = \: a } \\ \\<br /><br />\mathsf{\implies {x}^{2} \: + \: x \: + \: 1 \: = \: b } \\ \\<br /><br />\mathsf{\implies 3{x}^{2} \: - \: 3x \: + \: 3 \: = \: c }

\mathsf{To \: be \: \: a \: , b , c \: \: in \: A.P, }

\mathsf{\implies c \: - \: b \: = \: b \: - \: a } \\ \\<br /><br />\mathsf{\implies a \: + \: c \: = \: b \: + \: b } \\ \\<br /><br />\mathsf{\implies a \: + \: c \: = \: 2b } \\ \\

\mathsf{ Plug \: the \: value \: of \: a , b \: and \: c : }<br />

\mathsf{\implies 2x \: + \: 1 \: + \: 3{x}^{2} \: - \: 3x \: + \: 3 \: = \: 2( {x}^{2} \: + \: x \: + \: 1 )} \\ \\ \mathsf{ \implies 3 {x}^{2} \: + \: 4 \: - \: x \: = \: 2 {x}^{2} \: + \: 2x \: + \: 2} \\ \\ \mathsf{ \implies 3 {x}^{2} \: - \: 2{x}^{2} \: + \: 4 \: - \: 2 \: - \: x \: - \: 2x \: = \: 0} \\ \\ \mathsf{ \implies {x}^{2} \: - \: 3x \: + \: 2 \: = \: 0 } \\ \\ \mathsf{Splitting \: middle \: term , } \\ \\ \mathsf{ \implies {x}^{2} \: - \: 2x \: - \: x \: + \: 2 \: = \: 0 }<br />

 \mathsf{ \implies x(x \: - \: 2) \: - \:1(x \: - \: 2) \: = \: 0} \\ \\ \mathsf{ \implies (x \: - \: 2)(x \: - \: 1) \: = \: 0 }

\mathsf{By \: Zero \: Product \: rule : } \\ \\ \mathsf{ \implies (x \: - \: 2) \: = \: 0 \: \: and \: \implies(x \: - \: 1) \: = \: 0} \\ \\ \mathsf{ \implies x \: = \: 0 \: + \: 2 \: \: and \: \implies x \: = \: 0 \: + \: 1 } \\ \\ \mathsf{ \therefore \quad \: x \: = \: 2 \: \: and \: \: 1}

\boxed{\underline{\mathsf{The \: required \: answers\: are \: 2 \: and \: 1 .}}}

\underline{\mathsf{Terms \: related \: to \: A.P.}} \\ \\<br /><br />\mathsf{\implies a \: = \: First \: term } \\ \\<br /><br />\mathsf{\implies d \: = \: Common \: difference } \\ \\<br /><br />\mathsf{\implies n \: = \: No. \: of \: terms } \\ \\ \mathsf{ \implies l \: = \:Last \: term } \\ \\ <br /><br />\mathsf{\implies T_{n} \: = \: nth \: term } \\ \\<br /><br />\mathsf {\implies S_{n} \: = \: Sum \: of \: n \: terms }

\underline{\mathsf{Formulae \: related \: to \: A.P.} }\\ \\<br /><br />\mathsf{ \implies T_{n} \: = \: a \: + \: ( n \: - \: 1 )d } \\ \\<br /><br />\mathsf{\implies S_{n} \: = \: \dfrac{n}{2}( a \: + \: l )} \\ \\<br /><br />\mathsf{\qquad \qquad 'or'} \\ \\<br /><br />\mathsf{ \qquad \qquad = \: \dfrac{n}{2}[( 2a \: + \: ( n \: - \: 1 )d]}

VijayaLaxmiMehra1: Well done
VijayaLaxmiMehra1: Thanks
Anonymous: My Pleasure !
Anonymous: Well explained! Great answer!
Anonymous: Thanks bro !!
GhaintKudi45: Nice ans!
Anonymous: Thanks dii !!
Anonymous: nice awesome super well explained answer
Similar questions