Math, asked by sanwesha000168, 4 days ago

Find x so that ( 5/3)^ -5 *(5/3)^ -11 =(5/3)^ 8x​

Answers

Answered by IntrovertLeo
10

Answer:

The value of x is - 2.

______________________

Given:

\sf \bigg( \dfrac{5}{3} \bigg)^{-5} \times  \bigg( \dfrac{5}{3} \bigg)^{-11} =  \bigg( \dfrac{5}{3} \bigg)^{8x}

To Find:

  • Value of x.

Solution:

\sf \bigg( \dfrac{5}{3} \bigg)^{-5} \times  \bigg( \dfrac{5}{3} \bigg)^{-11} =  \bigg( \dfrac{5}{3} \bigg)^{8x}

Using the law of exponents,

\sf \implies a^m \times a^n = a^{m+n}

\sf \implies \bigg( \dfrac{5}{3} \bigg)^{(-5)+(-11)} = \bigg( \dfrac{5}{3} \bigg)^{8x}

Adding the exponents,

 \sf \implies \bigg( \dfrac{5}{3} \bigg)^{-16} = \bigg( \dfrac{5}{3} \bigg)^{8x}

Let's take the exponents,

 \sf \implies -16 = 8x

Solving the equation,

 \sf \implies \dfrac{-16}{8} = x

 \sf \implies -2 = x

Verification:

To verify, let's substitute the value of x.

\sf \bigg( \dfrac{5}{3} \bigg)^{-5} \times  \bigg( \dfrac{5}{3} \bigg)^{-11} =  \bigg( \dfrac{5}{3} \bigg)^{8x}

Substitute the value of x,

\sf \implies \bigg( \dfrac{5}{3} \bigg)^{-5} \times  \bigg( \dfrac{5}{3} \bigg)^{-11} =  \bigg( \dfrac{5}{3} \bigg)^{8\times (-2)}

\sf \implies (-5) + (-11) = 8 \times (-2)

Solving the equation,

\sf \implies -5-11 = 8 \times -2

 \sf \implies -16 = 8 \times -2

 \sf \implies -16 = -16

∵ LHS = RHS

∴ Thus, verified.

Answered by Anonymous
1

Answer:

Answer:

The value of x is - 2.

______________________

Given:

\sf \bigg( \dfrac{5}{3} \bigg)^{-5} \times  \bigg( \dfrac{5}{3} \bigg)^{-11} =  \bigg( \dfrac{5}{3} \bigg)^{8x}

To Find:

Value of x.

Solution:

\sf \bigg( \dfrac{5}{3} \bigg)^{-5} \times  \bigg( \dfrac{5}{3} \bigg)^{-11} =  \bigg( \dfrac{5}{3} \bigg)^{8x}

Using the law of exponents,

\sf \implies a^m \times a^n = a^{m+n}

\sf \implies \bigg( \dfrac{5}{3} \bigg)^{(-5)+(-11)} = \bigg( \dfrac{5}{3} \bigg)^{8x}

Adding the exponents,

 \sf \implies \bigg( \dfrac{5}{3} \bigg)^{-16} = \bigg( \dfrac{5}{3} \bigg)^{8x}

Let's take the exponents,

 \sf \implies -16 = 8x

Solving the equation,

 \sf \implies \dfrac{-16}{8} = x

 \sf \implies -2 = x

Verification:

To verify, let's substitute the value of x.

\sf \bigg( \dfrac{5}{3} \bigg)^{-5} \times  \bigg( \dfrac{5}{3} \bigg)^{-11} =  \bigg( \dfrac{5}{3} \bigg)^{8x}

Substitute the value of x,

\sf \implies \bigg( \dfrac{5}{3} \bigg)^{-5} \times  \bigg( \dfrac{5}{3} \bigg)^{-11} =  \bigg( \dfrac{5}{3} \bigg)^{8\times (-2)}

\sf \implies (-5) + (-11) = 8 \times (-2)

Solving the equation,

\sf \implies -5-11 = 8 \times -2

 \sf \implies -16 = 8 \times -2

 \sf \implies -16 = -16

∵ LHS = RHS

∴ Thus, verified.

Similar questions