Math, asked by CandyCakes, 4 months ago

find x
  \bf\frac{x + 4}{2x + 1}  =  \frac{x + 2}{2x - 1}

Answers

Answered by Omprasad1234567890
166

Step-by-step explanation:

siso this may help you

all the best for exam

Attachments:
Answered by Anonymous
40

Answer:

{\large{\pmb{\sf{\underline{\underline{\maltese{ \: Question...}}}}}}}

\dashrightarrow{\sf{\dfrac{x +  4}{2x  +  1} = \dfrac{x  +  2}{2x  -  1}}}

\begin{gathered}\end{gathered}

{\large{\pmb{\sf{\underline{\underline{\maltese{ \: Solution...}}}}}}}

: \small{\pmb{ \implies}}{\sf{\dfrac{x +  4}{2x  +  1} = \dfrac{x  +  2}{2x  -  1}}}

  • By cross multiplication

{: {\pmb{ \implies}}{\sf {\bigg(x (2x  -  1) \bigg)  + \bigg({4  (2x  -  1) \bigg)}}= \bf \bigg({x (2x + 1)} \bigg) + \bigg(2(2x + 1)\bigg)}}

{: {\pmb{ \implies}}{\sf {\bigg(2 {x}^{2}   -  x \bigg)  + \bigg({8 {x}   -  4 \bigg)}}= \bf \bigg({2 {x}^{2}  + x} \bigg) + \bigg(4x+ 2\bigg)}}

  • Canceling (2x²) from both side

{: {\pmb{ \implies}}{\sf{\bigg({\cancel{2 {x}^{2}} -  x} \bigg)  + \bigg({8x -  4 \bigg)}}= \bf \bigg({\cancel{2 {x}^{2}} + x} \bigg) + \bigg(4x+ 2\bigg)}}

{: {\pmb{ \implies}}{\sf{\bigg({-  x} + {8x\bigg) -  4 }}= \bf \bigg({ + x} +4x\bigg)+ 2}}

{: {\pmb{ \implies}}{\sf{\bigg({7x\bigg) -  4 }}= \bf \bigg(5x\bigg)+ 2}}

{: {\pmb{ \implies}}{\sf{{7x - 5x}}= \bf 4+ 2}}

{: {\pmb{ \implies}}{\sf{{2x}}= \bf 6}}

{: {\pmb{ \implies}}{\sf{{x}}= \bf  \dfrac{6}{2}}}

{: {\pmb{ \implies}}{\sf{{x}}= \bf   \cancel\dfrac{6}{2}}}

{: {\pmb{ \implies}}{\sf{{x}}= \bf 3}}

\quad\bigstar{\underline{\boxed{\pmb{\sf{\red{x= \bf  3}}}}}}

  • The value of x is 3.

\begin{gathered}\end{gathered}

{\large{\pmb{\sf{\underline{\underline{\maltese{ \: Verification...}}}}}}}

: {\pmb{ \implies}}{\sf{\dfrac{x +  4}{2x  +  1} = \dfrac{x  +  2}{2x  -  1}}}

  • Substituting the values of x = 3

: {\pmb{ \implies}}{\sf{\dfrac{3 +  4}{(2 \times 3)  +  1} = \dfrac{3  +  2}{(2 \times 3)  -  1}}}

: {\pmb{ \implies}}{\sf{\dfrac{7}{(6)  +  1} = \dfrac{5}{(6)  -  1}}}

: {\pmb{ \implies}}{\sf{\dfrac{7}{7} = \dfrac{5}{5}}}

: {\pmb{ \implies}}{\sf{{\cancel\dfrac{7}{7}} = {\cancel\dfrac{5}{5}}}}

: {\pmb{ \implies}}{\sf{1 = 1}}

\quad\bigstar{\underline{\boxed{\pmb{\sf{\red{LHS=RHS}}}}}}

  • Hence Verified!

\begin{gathered}\end{gathered}

{\large{\pmb{\sf{\underline{\underline{\maltese{ \: Learn \: More...}}}}}}}

  • \leadsto + = plus sign
  • \leadsto - = minus sign
  • \leadsto ± = plus - minus
  • \leadsto ∓ = minus - plus
  • \leadsto ( ) = parentheses
  • \leadsto [ ] = brackets
  • \leadsto (=) equals sign
Similar questions