Math, asked by basantlal, 10 months ago

Find x \dfrac{x+\sqrt{2}}{x-\sqrt{2}}=\dfrac{5}{4}

Answers

Answered by Anonymous
24

\huge\tt{\red{\underline{Given:}}}

\dfrac{x+\sqrt{2}}{x-\sqrt{2}}=\dfrac{5}{4}

\huge\tt{\red{\underline{To\:\:Find:}}}

★The value of x.

\huge\tt{\red{\underline{Concept\:\:Used:}}}

★We would be using the concept of Componendo and Dividendo.

\huge\tt{\red{\underline{Answer:}}}

We have,

\implies \dfrac{x+\sqrt{2}}{x-\sqrt{2}}=\dfrac{5}{4}

Using componendo and dividendo,

\implies \dfrac{(x+\sqrt{2})+(x-\sqrt{2})}{(x+\sqrt{2})-(x-\sqrt{2})}=\dfrac{5+4}{5-4}

\implies \dfrac{x+\cancel{\sqrt{2}}+x-\cancel{\sqrt{2}}}{\cancel{x}+\sqrt{2}-\cancel{x}+\sqrt{2}}=\dfrac{9}{1}

\implies \dfrac{\cancel{2}x}{\cancel{2}\sqrt{2}}=9

\implies\dfrac{x}{\sqrt{2}}=9

.°. {\underline{\boxed{x =9\sqrt{2}}}}

Therefore the value of x is 92.

Answered by Anonymous
1

Step-by-step explanation:

4(x +  \sqrt{2} ) = 5(x -  \sqrt{2} )

4x + 4 \sqrt{2}  = 5x - 5 \sqrt{2}

4x - 5x =  - 5 \sqrt{2}  - 4 \sqrt{2}

 - x =  - 9 \sqrt{2}

x = 9 \sqrt{2}

Similar questions