Math, asked by tanishroymadan, 7 hours ago

Find x using factorization method

 {x}^{2} + 3x - ( {y}^{2} + y - 2) = 0

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {x}^{2} + 3x - ( {y}^{2} + y - 2) = 0

Here,

 \red{\rm :\longmapsto\: Constant \: term \:  =  \: {y}^{2} + y - 2}

\rm \:  =  \:  {y}^{2} + 2y - y - 2

\rm \:  =  \: y(y + 2) - 1(y + 2)

\rm \:  =  \: (y + 2)(y - 1)

Now,

 \red{\rm :\longmapsto\:Coefficient \: of \: x \:  =  \: 3}

\rm \:  =  \: 2 + 1

\rm \:  =  \: 2 + 1 + y - y

\rm \:  =  \: (y + 2) - (y - 1)

So, given quadratic equation can be rewritten as

\rm :\longmapsto\: {x}^{2} + x[(y + 2) - (y - 1)] - (y + 2)(y - 1) = 0

\rm :\longmapsto\: {x}^{2} + x(y + 2) - x(y - 1) - (y + 2)(y - 1) = 0

\rm :\longmapsto\:x[x + (y + 2)] - (y - 1)[x +  (y + 2)]= 0

\rm :\longmapsto\:[x + y + 2][x - y + 1]= 0

\bf\implies \:x =  - (y + 2) \:  \:  \: or \:  \:  \: x = y - 1

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions