Math, asked by aaravi7, 11 months ago

find x using quadratic equation​

Attachments:

Answers

Answered by LovelyG
17

Answer:

\large{\underline{\boxed{\sf x =  \frac{2ab - ac - ab}{a - 2c + b}}}}

Step-by-step explanation:

\sf  \frac{a}{x - a}  +  \frac{b}{x - b}  =  \frac{2c}{x - c}

It can be written as ;

\sf \implies \frac{a}{x - a}  +  \frac{b}{x - b}  =  \frac{c +c}{x - c}

\sf \implies \frac{a}{x - a}  +  \frac{b}{x - b}  =  \frac{c}{x - c} +  \frac{c}{x - c}

\sf \implies \frac{a}{x - a}  -  \frac{c}{x - c}  =  \frac{c}{x - c}  - \frac{b}{x - b}

Now, taking LCM -

\sf \implies  \frac{a(x - c) - c(x - a)}{(x - a) \cancel{(x - c)}}  =  \frac{c(x - b) - b(x - c)}{ \cancel{(x - c)}(x - b)}

\sf \implies  \frac{ax -ac - cx + ac}{x - a}  =  \frac{cx - cb - bx +bc }{x - b}

\sf \implies  \frac{ax  - cx}{x - a}  =  \frac{cx - bx}{x - b}

\sf \implies  \frac{x(a - c) }{x - a}  =  \frac{x(c - b)}{x - b}

\sf \implies  \frac{a - c}{x - a}  =  \frac{c - b}{x - b}

\sf \implies\small(a - c)(x - b) = (c - b)(x - a) \\  \\ \small \sf \implies ax - ab - cx + bc = cx - ac - bx + ab \\  \\ \bf Taking \: like \: terms \: one \: side -   \\  \\ \sf \implies ax - cx - cx + bx =  - ac + ab + ab - bc \\  \\ \sf \implies ax - 2cx + bx = 2ab - ac - ab \\  \\ \sf \implies x(a - 2c + b) = 2ab - ac - ab \\  \\   \red{\boxed{\bf x =  \frac{2ab - ac - ab}{a - 2c + b} }}  \rightarrow  \sf Answer.


Anonymous: Great !
BrainlyGod: so much work... nice
LovelyG: Thank you :)
Similar questions