Math, asked by kadamsiddhant25, 2 months ago

Find X where 1\4! + 3\6! = X\8!

Answers

Answered by Anonymous
7

Question :-

Find x -

\sf \dfrac{1}{4!} + \dfrac{3}{6!} = \dfrac{x}{8!}

Answer :-

Factorial of a number n is the product of all positive integers less than or equal to n. It is denoted by n!.

For example :- 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1

\implies\sf \dfrac{1}{4!} + \dfrac{3}{6!} = \dfrac{x}{8!}

\implies\sf \dfrac{1}{4 \times 3 \times 2\times 1} + \dfrac{\not3}{6 \times 5 \times 4 \times \not3 \times 2\times 1} = \dfrac{x}{8!}

\implies\sf \dfrac{1}{24} + \dfrac{1}{240} = \dfrac{x}{8!}

\implies\sf \dfrac{10}{240} +\dfrac{1}{240} = \dfrac{x}{8!}

\implies\sf \dfrac{11}{240} = \dfrac{x}{8!}

\implies\sf \dfrac{11}{240} = \dfrac{x}{8\times 7 \times 6 \times 5 \times 4 \times 3 \times 2\times 1}

\implies\sf \dfrac{11}{240} = \dfrac{x}{40320}

\implies\sf 240 \times x = 40320 \times 11

\implies\sf 240x = 443520

\implies\sf x = 1848

Value of x = 1848

Similar questions