Math, asked by dax1416, 4 months ago

Find X

(X^2 -2018^2)^2 -8072X -1=0​

Answers

Answered by FriendsLoverAritra
6

Answer:

i count find it in google

Answered by pulakmath007
1

SOLUTION

TO DETERMINE

The value of x when

 \sf{ {( {x}^{2} -  {2018}^{2} ) }^{2}  - 8072x - 1 = 0}

EVALUATION

 \sf{ {( {x}^{2} -  {2018}^{2} ) }^{2}  - 8072x - 1 = 0}

 \sf{  \implies \: { \bigg((x + 2018)(x - 2018) \bigg)}^{2}  -  \bigg( {(x + 2018)}^{2} -  {(x - 2018)}^{2}   \bigg) - 1 = 0}

Let a = x + 2018 & b = x - 2018

Above gives

 \sf{ {a}^{2}  {b}^{2}  -  {a}^{2} +  {b}^{2}  - 1 = 0 }

 \sf{ \implies {a}^{2}(  {b}^{2}  -  1) + ( {b}^{2}  - 1 )= 0 }

 \sf{ \implies ({a}^{2} + 1)(  {b}^{2}  -  1)= 0 }

 \sf{ either \: ({a}^{2} + 1) = 0 \:  \: or \:  \: (  {b}^{2}  -  1)= 0 }

 \sf{ either \:  \: {a}^{2}  =  -  1 \:  \: or \:  \:  {b}^{2}   = 1 }

Since x is real

 \sf{ {a}^{2}  =  -  1 \:  \: is \: not \: possible}

 \sf{  \implies \: {b}^{2}   = 1 }

 \sf{  \implies \: {b}  = \pm  \: 1 }

Now b = 1 gives x = 2019

b = - 1 gives x = 2017

Hence the required solution is 2017, 2019

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. solve 1/|2x-1|<6 and express it using interval notation

https://brainly.in/question/23073185

Similar questions