Math, asked by rumad0019, 1 month ago

Find x: x=8(x)^1/2 + 9 please explain i will make u brainlist

Answers

Answered by user0888
9

\large{\boxed{\text{Working Procedure}}}

\large{\text{\underline{Step A: Finding the Quadratic Equation}}}

We will substitute x^{\frac{1}{2}} with t.

Let,

\hookrightarrow t=x^{\frac{1}{2}}

Then,

\hookrightarrow t^{2}=x

Now we can establish an equation for t. The newly made equation, t^{2}=8t+9 is a quadratic equation.

\large{\text{\underline{Step B: Solving the Quadratic Equation}}}

Then there are three methods to solve the quadratic equation,

factorization method.

quadratic formula method.

completing the square method.

Here we will use factorization.

\large{\boxed{\text{Solution}}}

\large{\text{\underline{Step A: Finding the Quadratic Equation}}}

The quadratic equation is,

\hookrightarrow t^{2}=8t+9

\hookrightarrow t^{2}-8t-9=0

\large{\text{\underline{Step B: Solving the Quadratic Equation}}}

\hookrightarrow t^{2}-8t-9=0

\hookrightarrow (t+1)(t-9)=0

\hookrightarrow t=-1\ \text{or}\ t=9

Let's substitute the value of t.

\hookrightarrow x^{\frac{1}{2}}=-1\ \text{or}\ x^{\frac{1}{2}}=9

The first equation doesn't have a solution. Then from the second equation,  we have x=9^{2}, or x=81 as our solution.

\hookrightarrow x=81\ \text{\underline{(ANSWER.)}}

\large{\boxed{\text{Verification}}}

We have x=81 as a solution.

\hookrightarrow 81=8\sqrt{81} +9

\hookrightarrow 81=8\cdot 9+9

\hookrightarrow 81=81

Thus, the value satisfies the equation. Hence verified!

Answered by TrustedAnswerer19
7

 \orange{ \boxed{\boxed{\begin{array}{cc}  \leadsto \bf \: given \\  \\  \rm \: x = 8 {x}^{ \frac{1}{2} } + 9 \\  \\  \rm  \implies\:x  - 9= 8 {x}^{ \frac{1}{2} }  \\  \\  \rm  \implies\: {(x - 9)}^{2}  =  {(8 {x}^{ \frac{1}{2} } })^{2}  \\  \\  \rm  \implies\: {x}^{2}   - 18x + 81 = 64x \\  \\  \rm  \implies\: { {x}^{2} - 18x - 64x + 81 = 0} \\  \\  \rm  \implies\: {x}^{2}  - 82x + 81 = 0 \\  \\  \rm  \implies\: {x}^{2}   - 81x - x + 81 = 0 \\  \\  \rm  \implies\:x(x - 81) - 1(x - 81) = 0 \\  \\  \rm  \implies\:(x - 81)(x - 1) = 0\end{array}}}}

Now,

\pink{ \boxed{\boxed{\begin{array}{c | c} \underline{ \rm \: either }&  \underline{\rm \: or} \\  \\  \rm \: x - 81 = 0& \rm \: x - 1 = 0 \\  \\  \rm  \implies\:x = 81& \rm  \implies\:x = 1 \\  \\  \end{array}}}}

 \therefore \:  \rm \: x = 81 \:  \: or \:  \: 1\:

But x = 1 does not satisfy the equation.

So,

x = 81

Similar questions