Find x, y, and z such that x³+y³+z³=k, for each k from 1 to 100
Answers
Answer:
Step-by-step explanation:
Given : x³+y³+z³=k , k from 1 to 100
To Find : x, y, and z
Solution:
This Question can have lot of solutions as constraints are very less
there is no information whether x , y & z are integer
+ ve , Real numbers
k = 1
x= 1 , y = 0 , z = 0
x =0 , y = 1 , z = 0
x = 0 , y = 0 , = 1
k = 2
x= 1 , y = 1 , z = 0
x =0 , y = 1 , z = 1
x = 1 , y = 0 , = 1
k = 3
x= 1 , y = 1 , z = 3
x = 1 , y = 1 , z = 1
x = 1 , y = 0 , = 1
k = 4
x=∛3 , y = 1 , z = 0
x=∛2 , y = ∛2 , z = 0
x=∛2 , y = 1 , z = 1
This way we can have so many solution
Easiest :
x³+y³+z³=k,
x = ∛k , y = 0 , z = 0 will satisfy
Answer:
People also ask
What is the answer to x³ Y³ Z³ K?
These are known as the Pythagorean Triples, like (3,4,5) and (5,12,13). Now, do any trios (x,y,z) satisfy x³+y³=z³? The answer is no, and that's Fermat's Last Theorem
Step-by-step explanation:
can I talk to you dear
ur choice