Math, asked by Anonymous, 16 days ago

Find (x, y) position of centroid of the area under curve y=1+x+x^2 from x=0 to x=2. your answer should be correct to two decimals.​

Answers

Answered by mathdude500
5

\large\underline{\bold{Solution-}}

We have to first find the area bounded between the curve

 \sf \: y \:  =  \:  1 + x +  {x}^{2}   \: from \: x = 0 \: and \: x = 2

Required area is given by

\rm :\longmapsto\:A \:  =  \: \int_a^b \: y \: dx

Here,

y = 1 + x + x²

a = 0

b = 2

So,

\rm :\longmapsto\:A \:  =  \: \int_0^2 \: (1 + x +  {x}^{2}) \: dx

\rm :\longmapsto\:A = \bigg(x +  \dfrac{ {x}^{2} }{2}  + \dfrac{ {x}^{3} }{3}  \bigg) _0^2

\rm :\longmapsto\:A = 2 + \dfrac{4}{2}  + \dfrac{8}{3}  = \dfrac{12 + 12 + 16}{6}  = \dfrac{20}{3}

Now, using the formula for the x-coordinate of the centroid we have:

\rm :\longmapsto\:{\overline x } = \dfrac{1}{A}  \: \int_a^b \:x y \: dx

\rm :\longmapsto\:{\overline x } = \dfrac{3}{20}  \: \int_0^2 \:x (1 + x +  {x}^{2})  \: dx

\rm :\longmapsto\:{\overline x } = \dfrac{3}{20}  \: \int_0^2 \:(x  +  {x}^{2} +  {x}^{3}  ) \: dx

\rm :\longmapsto\:{\overline x } = \dfrac{3}{20} \bigg(\dfrac{ {x}^{2} }{2}  + \dfrac{ {x}^{3} }{3}  + \dfrac{ {x}^{4} }{4}  \bigg) _0^2

\rm :\longmapsto\:{\overline x } = \dfrac{3}{20}\bigg( \dfrac{4}{2}  + \dfrac{8}{3}  + \dfrac{16}{4} \bigg)

\rm :\longmapsto\:{\overline x } = \dfrac{3}{20} \bigg( 6 + \dfrac{8}{3} \bigg)

\rm :\longmapsto\:{\overline x } = \dfrac{3}{20}\bigg( \dfrac{18 + 8 }{3} \bigg)

\bf :\implies\:{\overline x } = \dfrac{26}{20} \:  =  \: 1.3

Again,

using the formula for the y-coordinate of the centroid we have:

\rm :\longmapsto\:{\overline y } = \dfrac{1}{A}  \: \int_a^b \:\dfrac{ {y}^{2} }{2}  \: dx

\rm :\longmapsto\:{\overline y } = \dfrac{3}{20}  \: \int_0^2 \:\dfrac{ {(1 + x +  {x}^{2} )}^{2} }{2}  \: dx

\rm :\longmapsto\:{\overline y } = \dfrac{3}{40}  \: \int_0^2 \:(1 +  {x}^{2} +  {x}^{4} + 2x +  {2x}^{3} +  {2x}^{2})\: dx

 \ = \dfrac{3}{40}  \bigg(x + \dfrac{ {x}^{3} }{3}  + \dfrac{ {x}^{5} }{5}  +  {x}^{2} + \dfrac{ {x}^{4} }{2}  + \dfrac{2 {x}^{3} }{3}   \bigg) _0^2

\rm :\longmapsto\:{\overline y } = \dfrac{3}{40}\bigg(2 + \dfrac{8}{3} +  \dfrac{32}{5} + 4 + \dfrac{16}{2}  + \dfrac{16}{3}\bigg)

\rm :\longmapsto\:{\overline y } = \dfrac{3}{40}\bigg(22 +   \dfrac{32}{5}  \bigg)

\rm :\longmapsto\:{\overline y } = \dfrac{3}{40}\bigg( \dfrac{110 + 32}{5} \bigg)

\rm :\longmapsto\:{\overline y } = \dfrac{426}{200}

\bf\implies \:{\overline y } = 2.13

 \bf \: Hence,  \: position  \: of  \: centroid \:  is  \: (1.3,2.13)

Attachments:
Similar questions