Math, asked by sahilgundo2002, 1 year ago

Find x,y,z using cramers rule, if x-y+z=4, 2x+y-3z=0 and x+y+z=2

Answers

Answered by MaheswariS
15

Answer:

The solution is

x=2, y=-1, z=1

Step-by-step explanation:

Given system of equations is

x-y+z=4

2x+y-3z=0

x+y+z=2

\Delta=\left|\begin{array}{ccc}1&-1&1\\2&1&-3\\1&1&1\end{array}\right|

\Delta=1(1+3)+1(2+3)+1(2-1)

\Delta=4+5+1

\Delta=10

\Delta_x=\left|\begin{array}{ccc}4&-1&1\\0&1&-3\\2&1&1\end{array}\right|

\Delta_x=4(1+3)+1(0+6)+1(0-2)

\Delta_x=16+6-2

\Delta_x=20

\Delta_y=\left|\begin{array}{ccc}1&4&1\\2&0&-3\\1&2&1\end{array}\right|

\Delta_y=1(0+6)-4(2+3)+1(4-0)

\Delta_y=6-20+4

\Delta_y=-10

\Delta_z=\left|\begin{array}{ccc}1&-1&4\\2&1&0\\1&1&2\end{array}\right|

\Delta_z=1(2-0)+1(4-0)+4(2-1)

\Delta_z=2+4+4

\Delta_z=10

By cramer's rule,

x=\frac{\Delta_x}{\Delta}

x=\frac{20}{10}

x=2

y=\frac{\Delta_y}{\Delta}

y=\frac{-10}{10}

y=-1

z=\frac{\Delta_z}{\Delta}

z=\frac{10}{10}

z=1

The solution is

x=2, y=-1, z=1

Similar questions