Math, asked by charukhushi5770, 11 months ago

Find x4 + 1/x4 when x+ 1/x = 7

Answers

Answered by rishu6845
2

Answer:

 {x}^{4} \:  +  \:  \dfrac{1}{ {x}^{4} } \:  =  \: 2207

Step-by-step explanation:

Given---->

x \:  +  \:  \dfrac{1}{x} \:  =  \: 7

To find ---->

value \: of \:

 {x}^{4} \:  +  \:  \dfrac{1}{ {x}^{4} }

Concept used ---->

( \: a \:  +  \: b \: ) ^{2} \:  = {a}^{2} \:  +  \:  {b}^{2} \:  +  \: 2 \: a \: b

Solution---->

now

x \:  +  \:  \dfrac{1}{x}  \:  =  \: 7

squaring \: both \: sides

 =  >  \: ( \: x \:  +  \:  \dfrac{1}{x}  \: ) ^{2} \:  =  \:  {7}^{2}

 =  >  \:  {x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  +  \: 2 \: x \:  \dfrac{1}{x}  \:  =  \: 49

 =  >  \:  {x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} } \:  +  \: 2 \:  =  \: 49

 =  >  {x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }  \:  =  \: 49 \:  -  \: 2

 =  >  \:  {x}^{2}  \:   +   \:  \dfrac{1}{ {x}^{2} } \:  =  \: 47

squaring \: both \: sides \: again \: we \: get

( \:  \ {x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} }  \: ) ^{2}  =  \: ( \: 47 \: ) ^{2}

 =  >  {x}^{4} \:  +  \:  \dfrac{1}{ {x}^{4} }   \:  +  \: 2 \:  {x}^{2} \:  \dfrac{1}{ {x}^{2} } \:  =  \: 2209

 =  >  {x}^{4}  \:  +  \:  \dfrac{1}{ {x}^{4} }  \:  +  \: 2 \:  =  \: 2209

 =  >   {x}^{4 \:}  \:  +  \:  \dfrac{1}{ {x}^{4} }  \:  =  \: 2209 \:  -  \: 2

 =  >  {x}^{4}  \:   + \:  \dfrac{1}{ {x}^{4} }  =  \: 2207

Similar questions