find xa nd y by cross multiplication method
q 1
Answers
Answer:
Given equations:-
Given equations:-x2+y3=13andx5−y4=−2
Given equations:-x2+y3=13andx5−y4=−2Let x1=pandy1=q
Given equations:-x2+y3=13andx5−y4=−2Let x1=pandy1=qThus, we have,
Given equations:-x2+y3=13andx5−y4=−2Let x1=pandy1=qThus, we have,2p+3q=13=>2p+3q−13=05p−4q=−2=>5p−4q+2=0
Given equations:-x2+y3=13andx5−y4=−2Let x1=pandy1=qThus, we have,2p+3q=13=>2p+3q−13=05p−4q=−2=>5p−4q+2=0Using cross-multiplication method to solve the equations we have,
Given equations:-x2+y3=13andx5−y4=−2Let x1=pandy1=qThus, we have,2p+3q=13=>2p+3q−13=05p−4q=−2=>5p−4q+2=0Using cross-multiplication method to solve the equations we have,(3)(2)−(−4)(−13)p=(−13)(5)−(2)(2)q=(2)(−4)−(5)(3)16−52p=−65−4q=−8−151−46p=−69q=−23
=>−69q=−231or,q=3Now,p=x1=2=>x=21andq=y1=3=>y=31∴x=21andy=31
Step-by-step explanation:
PLEASE MARK AS BRANILST AND LIKE