Find y. cosec(π/2+x) + y cos x cot (π/2+x) = sin(π/2 + x)
Answers
Answered by
18
Given: The expression cosec(π/2+x) + y cos x cot (π/2+x) = sin(π/2 + x)
To find: The value of y.
Solution:
- Now we have given cosec(π/2+x) + y cos x cot (π/2+x) = sin(π/2 + x)
- We know :
cosec (π/2+x) = sec x
cot (π/2+x) = - tan x
sin(π/2 + x) = cos x
- So substituting this, we get:
sec x + y cos x (- tan x) = cos x
sec x + y cos x (- sin x / cos x) = cos x
sec x - y sin x = cos x
sec x - cos x = y sin x
1/cos x - cos x = y sin x
1 - cos^2 x = y sin x cos x
sin^2 x = y sin x cos x
sin x = y cos x
y = sin x / cos x
y = tan x
Answer:
So the value of y is tan x.
Similar questions