Math, asked by armaanianneha74333, 4 months ago

find yn in the following case
(ii) y = 1/(ax + b )^m​

Answers

Answered by MysticPetals
5

|| GIVEN ||

 \bf \:  y =  {(ax + b)}^{m}

|| TO FIND ||

 {n}^{th \:} derivative \:  {y}^{n}

|| SOLUTION ||

y \:   =  {(ax + b)}^{m}

Differentiate with respect to x ,

 \dfrac{dy}{dx}  =  \dfrac{d}{dx}  {(ax + b)}^{m}

 \implies {(ax + b)}^{m}  =  {m(ax + b)}^{m - 1}

By substituting the above in dy/dx , we get

 = m {(ax + b)}^{m - 1}  \times  \dfrac{d}{dx} (ax + b)

Using chain rule , So we had multiplied again with ax+b.

Now , We know that , always the variable takes the value 1 and the constant becomes 0 , Let's do substitution here.

m {(ax + b)}^{m - 1}  \times ((a \times 1) + 0)

  \bf \:   \dfrac{dy}{dx} = ma {(ax + b)}^{m - 1}

We have found the first derivative , Now let's find the second derivative.

 \dfrac{ {d}^{2}y }{d {x}^{2} }  =  \dfrac{d}{dx} (ma( {ax + b)}^{m - 1})

 = ma \dfrac{d}{dx}  {(ax + b)}^{m - 1}

 = ma \dfrac{d}{dx}  {(ax + b)}^{m - 1}

 = ma(m - 1) {(ax + b)}^{m - 2}  \times  \dfrac{d}{dx} (ax + b)

Like the first derivative We must calculate for the second derivative.

 = ma(m - 1) {(ax  + b)}^{m  - 2}  \\   \:\times (a \times 1 + 0)

m {a}^{2} (m - 1) {(ax + b)}^{m - 2}

So, The nth derivative will be ,

 \dfrac{ {d}^{n}y }{d {x}^{n} }  =  {a}^{n}m(m  - 1)(m - 2) ...(m  - (n + 1)) \:  {(ax + b)}^{m - n}

______________________ .


Anonymous: Nice
Answered by Anonymous
3

Solution:-

 1st derivation

\rm y_1=(ax+b)^{m-1} .m\dfrac{d}{dx} (ax+b)\\ \\\rm y_1 =a.m(ax+b)^{m-1}\\ \\\rm y_2 =a^{2}.m \: (m-1)(ax+b)^{m-2}\\ \\\rm y_3=a^{3}.m(m-1)(m-2)(ax+b)^{m-3} \\ \\\rm y_4=a^{4}.m(m-1)(m-2)(m-3)(ax+b)^{m-4}\\ \\\rm y_n=a^{n}.m{m-1}{m-2}{m-n+1}.{ax+b}^{m-n}

If m = n

y_n=a^{n}.m{m-1}{m-2}(ax+b)^{m-m}=1

\rm = a^{n}.m(m-1)(m-2)(m-3) _________ 3.2.1

Answer,

       \rm{y_n=a^{n}.m1}

Similar questions