Math, asked by manjusingh9644, 9 months ago

find zero of all the following quadratic polynomial and verify the relationship between zero and the coefficient 6√3x2-7x-√3​

Answers

Answered by Anonymous
1

Answer:

\sf{The \ zeroes \ of \ the \ polynomial \ are}

\sf{-\dfrac{1}{3\sqrt3} \ and \ \dfrac{\sqrt3}{2}.}

Given:

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{p(x)=6\sqrt3x^{2}-7x-\sqrt3.}

To find:

\sf{The \ zeroes \ of \ the \ polynomial.}

Solution:

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{p(x)=6\sqrt3x^{2}-7x-\sqrt3}

\sf{p(x)=0}

\sf{\therefore{6\sqrt3x^{2}-7x-\sqrt3=0}}

\sf{\therefore{6\sqrt3x^{2}-9x+2x-\sqrt3=0}}

\sf{\therefore{3\sqrt3x(2x-\sqrt3)+1(2x-\sqrt3)=0}}

\sf{\therefore{(3\sqrt3x+1)(2x-\sqrt3)=0}}

\sf{\therefore{x=-\dfrac{1}{3\sqrt3} \ or \ \dfrac{\sqrt3}{2}}}

\sf\purple{\tt{\therefore{The \ zeroes \ of \ the \ polynomial \ are}}}

\sf\purple{\tt{-\dfrac{1}{3\sqrt3} \ and \ \dfrac{\sqrt3}{2}.}}

________________________________

Verification:

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{p(x)=6\sqrt3x^{2}-7x-\sqrt3.}

\sf{Here, \ a=6\sqrt3, \ b=-7 \ and \ c=-\sqrt3}

\sf{Sum \ of \ zeroes=-\dfrac{1}{3\sqrt3}+\dfrac{\sqrt3}{2}}

\sf{\therefore{Sum \ of \ zeroes=\dfrac{-2+9}{6\sqrt3}}}

\sf{\therefore{Sum \ of \ zeroes=\dfrac{7}{6\sqrt3}...(1)}}

\sf{-\dfrac{b}{a}=\dfrac{7}{6\sqrt3}...(2)}

\sf{...from \ (1) \ and \ (2)}

\boxed{\sf{Sum \ of \ zeroes=-\dfrac{b}{a}}}

\sf{Product \ of \ zeroes=-\dfrac{1}{3\sqrt3}\times\dfrac{\sqrt3}{2}}

\sf{\therefore{Product \ of \ zeroes=-\dfrac{\sqrt3}{6\sqrt3}...(3)}}

\sf{\dfrac{c}{a}=-\dfrac{\sqrt3}{6\sqrt3}...(4)}

\sf{...from \ (3) \ and \ (4)}

\boxed{\sf{Product \ of \ zeroes=\dfrac{c}{a}}}

\sf{Hence, \ verified.}

Similar questions