Math, asked by hetalpat95, 1 month ago

find zero of p(x)=x2+9x+14 and verify believe between zeroes and coefficient ​

Answers

Answered by ImperialGladiator
2

Answer:

Zeros of the polynomial are -2 and -7

Explanation:

Given polynomial,

 \implies \:  {x}^{2}  + 9x + 14 = 0

On comapring with the general form of equation ax² + bx + c = 0

We get,

  • a = 1
  • b = 9
  • c = 14

By quadratic formula,

 \implies\: x =  \dfrac{ - b \pm \sqrt{ {(b)}^{2} - 4ac } }{2a}

{ \implies\: x =  \dfrac{ - 9 \pm \sqrt{ {(9)}^{2} - 4(1)(14) } }{2(1)} }

{ \implies\: x =  \dfrac{ - 9 \pm \sqrt{ 81 - 56 } }{2} }

{ \implies\: x =  \dfrac{ - 9 \pm \sqrt{25} }{2} }

{ \implies\: x =  \dfrac{ - 9 \pm 5 }{2} }

{ \implies\: x =  \dfrac{ - 9  +  5 }{2} } \: { \rm\: and \: } \:  \dfrac{ - 9 - 5}{2}

{ \implies\: x =  \dfrac{ - 4}{2} } \: { \rm\: and \: } \:  \dfrac{ - 14}{2}

{ \implies\: x = - 2 \: { \rm \: and} \:   - 7 }

Zeros of the polynomial are -2 and -7

Now, verification of the zeros and coefficients :-

 \rm \: \bullet \:  sum \:of \: zeros  :  -  \\  \implies \:  \dfrac{ - b}{a}  =   - 2 + ( - 7) \\  \implies \:  \dfrac{ - 9}{1}  =  - 2 - 7 \\  \implies \:  - 9 =  - 9

And also,

 \rm \: \bullet \:  product \: of \: zeros :    -  \\   \implies \: \dfrac{c}{a}  = ( - 2) \ast( - 7)\\   \implies \: \dfrac{14}{1}  = 14\\   \implies \:14 = 14

{\underline{ \underline{ \textsf{ \textbf{hence \: verified}}}}}

____________________________________

{{ \rm \bigstar \: General \: form \: of \: a \: quadratic \: equation }=  {ax}^{2}   +  bx  + c} \\

 \rm \: \bigstar Quadratic \: formula \: :  -  \\  \implies \: x  =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

Similar questions