Math, asked by kajalkachhi8, 1 month ago

find zeroes and relation between zeroes and coficience of polynomial 2x²+X-3

Answers

Answered by kamalhajare543
26

Answer:

Given :-

  • 2x² - x - 3

To Find :-

What are the zeros of the quadratic polynomial and verify the relationship between the zeroes and co-efficient.

 \pink{ \sf \bold{Solution :-}}

Given Equation :

\begin{gathered} \boxed{\bigstar \: \: \sf\bold{\purple {2x^2 - x - 3}}}\\\end{gathered}

\mapsto \sf 2x^2 - x - 3 =\: 0

\implies \sf 2x^2 - (3 - 2)x - 3 =\: 0

\implies \sf 2x^2 - 3x + 2x - 3 =\: 0

\implies \sf x(2x - 3) + 1(2x - 3) =\: 0

\implies \bf (x + 1) =\: 0

\longrightarrow \sf x + 1 =\: 0

\longrightarrow \sf\bold{\red{x =\: - 1}}

\implies \bf{(2x - 3) =\: 0}

\longrightarrow \sf 2x =\: 3

\begin{gathered}\longrightarrow \sf\bold{\red{x =\: \dfrac{3}{2}}}\\\end{gathered}

\begin{gathered} \large{{\small{\bold{\underline{\therefore\: \red{ The\: zeroes\: are\: - 1\: and\: \dfrac{3}{2}\: respectively\: .}}}}}} \\ \end{gathered}

Now, we have to verify the relationship between the zeroes and co-efficient ;

Given Equation :

\bigstar\: \bf{2x^2 - x - 3}

where,

  • a = 2
  • b = - 1
  • c = - 3

➲ Sum of Roots :

As we know that :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{Sum\: of\: roots\: (\alpha + \beta) =\: \dfrac{- b}{a}}}}\\\end{gathered}

We have :

  • a = 2
  • b = - 1
  • α = - 1
  • β = 3/2

According to the question by using the formula we get,

\implies \sf (- 1) + \dfrac{3}{2} =\: \dfrac{- (- 1)}{2}

\implies \sf - 1 + \dfrac{3}{2} =\: \dfrac{1}{2}

\implies \sf \dfrac{- 2 + 3}{2} =\: \dfrac{1}{2}

\begin{gathered}\implies \sf\bold{\green{\dfrac{1}{2} =\: \dfrac{1}{2}}}\\\end{gathered}

Hence, Verified.

➲ Product of Roots :

As we know that :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{Product\: of\: roots\: (\alpha\beta) =\: \dfrac{c}{a}}}}\\\end{gathered}

We have :

  • a = 2
  • c = - 3
  • α = - 1
  • β = 3/2

According to the question by using the formula we get,

\implies \sf (- 1) \times \dfrac{3}{2} =\: \dfrac{- 3}{2}

 \sf \: \implies \sf - 1 \times \dfrac{3}{2} =\: \dfrac{3}{2}

\implies \sf \bold{\green{\dfrac{- 3}{2} =\: \dfrac{- 3}{2}}}

Hence, Verified.

Answered by GraceS
19

\sf\huge\bold{Answer:}

Given :

Qadratic polynomial

2x²+x-3

To find :

Zeroes of 2x²+x-3

To verify :

Relation between zeroes and coefficient

Solution :

\fbox{Split\:Middle\:Term}

 \tt\  = 2 {x}^{2}  + x - 3

 \tt\  = 2 {x}^{2}  - 3x + 2x - 3

 \tt\  = 2 {x}^{2}  + 2x-3x - 3

 \tt\  =   2x(x + 1) - 3(x + 1)

 \tt\  = (2x - 3)(x + 1)

  • To find zeroes put polynomial = 0

 \tt\ 2 {x}^{2} + x - 3 = 0

 \tt\ \: (2x - 3)(x + 1)  = 0

 \tt\ x =   \frac{ 3}{2}  \: ,</p><p> \: -1 \\

 \boxed{\bold\purple{x =   \frac{3}{2} ,-1}}

Verification :

There are two relations between zeroes and coefficient

  1. Sum of zeroes
  2. Product of zeroes

 \boxed{\tt \red {sum \: of \: zeroes( \alpha   + \beta ) =  \frac{coefficient \: of \:  {x}(-b) }{coefficient \: of \:  {x}^{2}(a) } }}

  • α = 3/2
  • β = - 1
  • a = 2
  • b = 1

 \tt\ :⟶   \frac{3}{2}  +(- 1 )=  \frac{1}{2}  \\

 \tt\ :⟶ \:  \frac{  3 - 4}{2}  =  \frac{1}{2}  \\

 \tt\ :⟶ \:  \frac{-1}{2}   = \frac{-1}{2}  \\

\bf\purple{LHS=RHS}

Hence verified.

 \boxed{\tt \red {product \: of \: zeroes( \alpha    \beta ) =  \frac{\:constant \: term \:  (c) }{coefficient \: of \:  {x}^{2}(a) } }}

  • α = 3/2
  • β = -1
  • c = -3
  • a = 2

 \tt\ :⟶  \frac{3}{2}  × (-1) =  \frac{-3}{2}  \\

 \tt\ :⟶ \:  \frac{ - 3}{2}  =  \frac{-3}{2}  \\

\bf\purple{LHS=RHS}

Hence, verified .

Similar questions