Find zeroes of polynomial
![x {}^{2} - \: 4 x {}^{2} - \: 4](https://tex.z-dn.net/?f=x+%7B%7D%5E%7B2%7D++-++%5C%3A+4)
Answers
Answered by
4
HOLA
==========================
![x {}^{2} \: - \: 4 \: = \: ( \: x \: + \: \sqrt{4} ) \: ( \: x \: - \: \sqrt{4} ) \\ \\ \\ x \: = \: \sqrt{4} \\ \\ x \: = \: - \: \sqrt{4} x {}^{2} \: - \: 4 \: = \: ( \: x \: + \: \sqrt{4} ) \: ( \: x \: - \: \sqrt{4} ) \\ \\ \\ x \: = \: \sqrt{4} \\ \\ x \: = \: - \: \sqrt{4}](https://tex.z-dn.net/?f=x+%7B%7D%5E%7B2%7D++%5C%3A++-++%5C%3A+4+%5C%3A++%3D++%5C%3A+%28+%5C%3A+x+%5C%3A++%2B++%5C%3A++%5Csqrt%7B4%7D+%29+%5C%3A+%28++%5C%3A+x+%5C%3A++-++%5C%3A++%5Csqrt%7B4%7D+%29+%5C%5C++%5C%5C++%5C%5C++x+%5C%3A++%3D++%5C%3A++%5Csqrt%7B4%7D++%5C%5C++%5C%5C+x+%5C%3A++%3D++%5C%3A++-++%5C%3A++%5Csqrt%7B4%7D+)
=======================
HOPE U UNDERSTAND ❤❤❤
==========================
=======================
HOPE U UNDERSTAND ❤❤❤
amrita14rai:
your answer is correct
Answered by
5
Let f(x) = x^2 - 4.
Zeroes of the polynomial is f(x) = 0
= > x^2 - 2^2 = 0
We know that a^2 - b^2 = (a + b)(a - b)
= > (x + 2)(x - 2) = 0
= > x = -2,2.
Therefore, the zeroes of the polynomial is 2,-2.
Hope this helps!
Similar questions