Math, asked by pushpanegi43210, 11 months ago

find zeroes of polynomial x²-5 and verify relationship between zeroes and its coefficients​

Answers

Answered by pranathidevulapally
0

Step-by-step explanation:

x^2-√5^2

=(x-√5)(x+√5) a^2-b^2=(a-b)(a+b)

Roots:

x-√5=0

x=√5

x+√5=0

x=-√5

Verification:

sum of zeros=-b/a

=0

-0/1=0

product of zeros=c/a

5/1=-5

√5(-√5) =-5

Hence verified

Answered by CaptainBrainly
6

\bold{\underline{\sf{\red{Given\: Polynomial}}}}

:\implies\sf\:x^2 - 5

:\implies\sf\:x = \sqrt{5} \: and \: - \sqrt{5}

Zeroes of the given polynomial are \sf\: \sqrt{5} \: and \: - \sqrt{5}

\bold{\underline{\sf{\red{Now,\:Verification}}}}

:\implies\sf\: (\alpha \:+\: \beta) = \dfrac{-b}{a}

:\implies\sf\: (\alpha \:+\:\beta) = \sqrt{5} \:+\: - \sqrt{5}

:\implies\sf\: 0

Now, product of Zeroes:

:\implies\sf\: (\alpha \:\beta) = \dfrac{c}{a}

:\implies\sf\: \dfrac{-5}{1} = - 5

:\implies\sf\: \sqrt{5} \: \times ( - \sqrt{5} )= - 5

\bold{\underline{\sf{\blue{Hence,\:Verified!}}}}

Similar questions