Math, asked by nunknown984, 3 months ago

Find zeroes of quadratic pplynomial p(x) = 4√3x²+5x-2√3 and verify rrlationship between zeroes and its coefficients​ using alpha and beta

Answers

Answered by vaishubh1707
48

Answer:

√3/4 and -2/√3

Step-by-step explanation:

Refer attached image.

Attachments:
Answered by Anonymous
69

Given Equation

 \tt \to \: 4 \sqrt{3}  {x}^{2}  + 5x - 2 \sqrt{3}  = 0

To find

 \tt \to \: zeroes \: and \: verify \:

Now Using Factorization method to find zeroes

 \tt \to \: 4 \sqrt{3}  {x}^{2}  + 5x - 2 \sqrt{3}  = 0

 \tt \to \: 4 \sqrt{3}  {x}^{2}  + 8x - 3x - 2 \sqrt{3}  = 0

 \tt \to \: 4x( \sqrt{3} x + 2) -  \sqrt{3} ( \sqrt{3}x+ 2 ) = 0

 \tt \to \: (4x -  \sqrt{3} )( \sqrt{3} x + 2) = 0

 \tt \to \: 4x -  \sqrt{3}  = 0 \:  \: and \:  \sqrt{3} x + 2 = 0

  \tt \to 4x =  \sqrt{3}  \:  \: and \:  \sqrt{3}x  =  - 2

 \tt \to \: x =  \dfrac{ \sqrt{3} }{4}  \:  \: and \: x =  \dfrac{ - 2}{ \sqrt{3} }

we get

 \tt \to \alpha  =   \dfrac{ \sqrt{3} }{4}  \:  \: and \:  \:  \beta  =  \dfrac{ - 2}{ \sqrt{3} }  \times  \dfrac{ \sqrt{3} }{ \sqrt{3} }  =   \dfrac{ - 2 \sqrt{3} }{3}

we have

 \tt \to \: a = 4 \sqrt{3}  ,\: \: b = 5 \: and \: c =  - 2 \sqrt{3}

Sum of the zeroes are

 \tt \to \: ( \alpha  +  \beta ) =  \dfrac{  - b}{a}

 \tt \to \:  \bigg(  \dfrac{ \sqrt{3} }{4}  -  \dfrac{2 \sqrt{3} }{3}  \bigg) =  \dfrac{ - 5}{4 \sqrt{3} }

 \tt \to \:  \dfrac{3 \sqrt{3}  - 8 \sqrt{3} }{12}  =  \dfrac{ - 5}{4 \sqrt{3} }

 \tt \to \:  \dfrac{ - 5 \sqrt{3} }{12}  \times  \dfrac{ \sqrt{3} }{ \sqrt{3} }  =  \dfrac{ - 5}{4 \sqrt{3} }

 \tt \to \:  \dfrac{ - 5 \times 3}{12 \sqrt{3} }  =  \dfrac{ - 5}{4 \sqrt{3} }

 \tt \to \:  \dfrac{ - 5}{4 \sqrt{3} }   = \dfrac{ - 5}{4 \sqrt{3} }

Product of zeroes

 \tt \to( \alpha  \beta ) =  \dfrac{ c}{a}

 \tt \to \:  \bigg( \dfrac{ \sqrt{3} }{4}  \times  \dfrac{ - 2}{ \sqrt{3} }  \bigg) =  \dfrac{ - 2 \sqrt{3} }{4 \sqrt{3} }

 \tt \to \:  \dfrac{ - 2 \sqrt{3} }{4 \sqrt{3} }  =  \dfrac{ - 1}{2}

 \tt \to  \dfrac{ - 1}{2}  =  \dfrac{ - 1}{2}

Hence Proved

Similar questions