Math, asked by 6666anushkajoshi, 3 months ago

find zeroes of the following
quadratic
polynomial and
and verify
relation
i) 2x^2+3x+1​

Answers

Answered by atharv2303
1

Answer:

Zeroes of the polynomial are 1 and

2

1

\sf\orange{Given:}Given:

\sf{The \ given \ quadratic \ polynomial \ is}The given quadratic polynomial is

\sf{\implies{2x^{2}-3x+1}}⟹2x

2

−3x+1

\sf\pink{To \ find:}To find:

\sf{Zeroes \ of \ the \ polynomial. }Zeroes of the polynomial.

\sf\green{\underline{\underline{Solution:}}}

Solution:

\sf{The \ given \ quadratic \ polynomial \ is}The given quadratic polynomial is

\sf{\implies{2x^{2}-3x+1}}⟹2x

2

−3x+1

\sf{\implies{2x^{2}-2x-x+1}}⟹2x

2

−2x−x+1

\sf{\implies{2x(x-1)-1(x-1)}}⟹2x(x−1)−1(x−1)

\sf{\implies{(x-1)(2x-1)}}⟹(x−1)(2x−1)

\sf{\implies{\therefore{x=1 \ or \ \frac{1}{2}}}}⟹∴x=1 or

2

1

\sf{Zeroes \ of \ the \ polynomial \ are \ 1 \ and \ \frac{1}{2}}Zeroes of the polynomial are 1 and

2

1

_______________________________________

\blue{\underline{\underline{Verification:}}}

Verification:

\sf{The \ given \ quadratic \ polynomial \ is}The given quadratic polynomial is

\sf{\implies{2x^{2}-3x+1}}⟹2x

2

−3x+1

\sf{Here, \ a=2, b=-3 \ and \ c=1}Here, a=2,b=−3 and c=1

\sf{Let \ \alpha \ be \ 1 \ and \ \beta \ be \ \frac{1}{2}}Let α be 1 and β be

2

1

_________________________

\sf{\alpha+\beta=1+\frac{1}{2}}α+β=1+

2

1

\sf{\therefore{\alpha+\beta=\frac{3}{2}...(1)}}∴α+β=

2

3

...(1)

\sf{\frac{-b}{a}=\frac{-(-3)}{2}}

a

−b

=

2

−(−3)

\sf{\therefore{\frac{-b}{a}=\frac{3}{2}...(2)}}∴

a

−b

=

2

3

...(2)

\sf{...from \ (1) \ and \ (2)}...from (1) and (2)

\sf{Sum \ of \ zeroes=\frac{-b}{a}}Sum of zeroes=

a

−b

_________________________

\sf{\alpha\beta=1\times\frac{1}{2}}αβ=1×

2

1

\sf{\therefore{\alpha\beta=\frac{1}{2}...(3)}}∴αβ=

2

1

...(3)

\sf{\frac{c}{a}=\frac{1}{2}...(4)}

a

c

=

2

1

...(4)

\sf{...from \ (3) \ and \ (4)}...from (3) and (4)

\sf{Product \ of \ zeroes=\frac{c}{a}}Product of zeroes=

a

c

\sf{Hence, \ verified. }Hence, verified.

Mark me as Brainliest and follow

Answered by kingoffather
0

Answer:

good afternoon dear can i intro please dear jee aapka choice

Similar questions