Math, asked by lovingrathour, 1 month ago

find zeroes :of the following quadratic polynomial and verify relationship between the zeroes and the coefficient

Ч√3x^2 +5x-2√3​

Answers

Answered by vanshikauppal2005
1

Step-by-step explanation:

 {4 \sqrt{3}x }^{2}  + 5x - 2 \sqrt{3}  = 0 \\ 4 \sqrt{3}  {x}^{2}  + (8 - 3)x - 2 \sqrt{3}  = 0 \\ 4 \sqrt{3}  {x}^{2}  + 8x - 3x - 2 \sqrt{3}  = 0 \\ 4x( \sqrt{3} x + 2) -  \sqrt{3} ( \sqrt{3} x + 2) = 0 \\ (4x -  \sqrt{3} )( \sqrt{3} x + 2) = 0 \\  \\ 4x -  \sqrt{3}  = 0 \: and \sqrt{3} x + 2 = 0 \\ x =  \frac{ \sqrt{3} }{4} andx =  \frac{ - 2}{ \sqrt{3} }  \\  \alpha  =  \frac{ \sqrt{3} }{4} and \beta  =   \frac{ - 2}{ \sqrt{3} }  \\  \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \frac{ \sqrt{3} }{4}  + ( \frac{ - 2}{ \sqrt{3} } ) =  \frac{ - 5}{4 \sqrt{3} }  \\   \frac{3 - 8}{4 \sqrt{3} }   =  \frac{ - 5}{4 \sqrt{3} }  \\  \frac{ - 5}{4 \sqrt{3} }  =  \frac{ - 5}{4 \sqrt{3} }  \\  \\  \alpha  \beta  =  \frac{c}{a}  \\  \frac{ \sqrt{3} }{4}  \times  \frac{ - 2}{ \sqrt{3} }  =  \frac{ - 2 \sqrt{3} }{4 \sqrt{3} }  \\  \frac{ - 1}{2}  =  \frac{ - 1}{2}

Answered by XxItzAdyashaxX
1

Answer:

4

3

x

2

+5x−2

3

=0

4

3

x

2

+(8−3)x−2

3

=0

4

3

x

2

+8x−3x−2

3

=0

4x(

3

x+2)−

3

(

3

x+2)=0

(4x−

3

)(

3

x+2)=0

4x−

3

=0and

3

x+2=0

x=

4

3

andx=

3

−2

α=

4

3

andβ=

3

−2

α+β=

a

−b

4

3

+(

3

−2

)=

4

3

−5

4

3

3−8

=

4

3

−5

4

3

−5

=

4

3

−5

αβ=

a

c

4

3

×

3

−2

=

4

3

−2

3

2

−1

=

2

−1

hmm she is so cute.

tum pin use karte ho kiya?

Similar questions