Math, asked by aarav1801, 8 months ago

Find zeroes of the polynomial given and verify the relation.
X^2 -4root3x - 15

Attachments:

Answers

Answered by learningmaths100
3

Answer:

PLEASE MARK ME A BRAINIEST

Step-by-step explanation:

d  =  {b}^{2}  - 4ac \\ d \:  = {(4 \sqrt{3} )}^{2}   - 4(1)( - 15) \\ d = 48 + 60 \\ d = 108 = 6 \sqrt{3}  \\  \\ now \: apply \: quadratic \: formula \: and \: you \: will \: get \: zeroes \: as \\ x \:  = 5 \sqrt{3}  \: or \: x =  -  \sqrt{3} \\  \\ now \: we \: need \: to \: prove \: relation \\ sum \: of \: zeros \:  =  \frac{ - (coefficient \: of \: x)}{coefficient \: of \:  {x}^{2} }  \\  \\ now \: take \: lhs \: we \: get \\ sum \: of \: zeros \:  =    5 \sqrt{3}  +    \sqrt{3}  \\ sum \: of \: zeroes \:  =   = - 4 \sqrt{3} \\  \\ now \: take \: rhs \:  \\  \frac{ - (cofficient \: of \: x)}{coefficient \: of \:  {x}^{2} }  =   \frac{ - ( - 4 \sqrt{3)} }{1}  = 4 \sqrt{3}  \\  \\  \\ so \: we \: can \: say \: that \: this \: relation \: is \: true \: because \: lhs \:  = rhs \\  \\ similary \: you \: can \: prove \: for \: product \: of \: zeros \:  =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} }

Similar questions