Math, asked by prathamgarg060606, 10 months ago

find zeroes (x^2/a)+(b/ac) *(-x/b) - (1/c)​

Attachments:

Answers

Answered by MaheswariS
1

\textbf{Given:}

f(x)=\frac{x^2}{a}+\frac{b}{ac}x-\frac{x}{b}-\frac{1}{c}

\textbf{To find:}

\text{Zeros of f(x)}

\textbf{Solution:}

\text{Consider,}

f(x)=\frac{x^2}{a}+\frac{b}{ac}x-\frac{x}{b}-\frac{1}{c}

f(x)=\frac{x^2c+bx}{ac}-(\frac{cx+b}{bc})

f(x)=x(\frac{xc+b}{ac})-(\frac{cx+b}{bc})

f(x)=\frac{x}{ac}(xc+b)-\frac{1}{bc}(cx+b)

f(x)=(\frac{x}{ac}-\frac{1}{bc})(cx+b)

\text{Now, $f(x)=0$}

\implies\,(\frac{x}{ac}-\frac{1}{bc})(cx+b)=0

\implies\,\frac{x}{ac}-\frac{1}{bc}=0\;\text{(or)}\;cx+b=0

\implies\,\frac{x}{ac}=\frac{1}{bc}\;\text{(or)}\;cx=-b

\implies\,x=\frac{ac}{bc}\;\text{(or)}\;x=\frac{-b}{c}

\implies\bf\,x=\frac{a}{b}\;\text{(or)}\;x=\frac{-b}{c}

\therefore\textbf{The zeros of f(x) are $\bf\frac{a}{b},\frac{-b}{c}\;$}

Find more:

Obtain other zeroes of the polynomial

f(x) = 2x4 + 3x3 - 5x2 - 9x - 3

if two of its zeroes are √3 and - √3.​

https://brainly.in/question/15922200

Similar questions