Math, asked by novacorps900, 1 month ago

find zeros of of the polynomial p(x)= a^2x^2​

Answers

Answered by nd4583671
7

the correct answer is option number 3

Answered by Anonymous
5

Step-by-step explanation:

 \rm \: p(x)= a^2x^2

 \rm \: To  \: find \:  zero  \: of \:  polynomial \:  p(x)=0

 \rm \: p(x)= a^2x^2

 \rm p(x)=0

 \rm  \implies a^2x^2 = 0

 \rm  \implies (ax)(ax) = 0

 \rm \implies \: x =  - a \:  \: or \: x =  - a

 \rm \implies \: x =  - a, - a

Answered by Anonymous
2

Step-by-step explanation:

 \rm \: p(x)= a^2x^2

 \rm \: To  \: find \:  zero  \: of \:  polynomial \:  p(x)=0

 \rm \: p(x)= a^2x^2

 \rm p(x)=0

 \rm  \implies a^2x^2 = 0

 \rm  \implies (ax)(ax) = 0

 \rm \implies \: x =  - a \:  \: or \: x =  - a

 \rm \implies \: x =  - a, - a

Answered by Anonymous
3

Step-by-step explanation:

 \rm \: p(x)= a^2x^2

 \rm \: To  \: find \:  zero  \: of \:  polynomial \:  p(x)=0

 \rm \: p(x)= a^2x^2

 \rm p(x)=0

 \rm  \implies a^2x^2 = 0

 \rm  \implies (ax)(ax) = 0

 \rm \implies \: x =  - a \:  \: or \: x =  - a

 \rm \implies \: x =  - a, - a

Answered by Anonymous
3

Step-by-step explanation:

 \rm \: p(x)= a^2x^2

 \rm \: To  \: find \:  zero  \: of \:  polynomial \:  p(x)=0

 \rm \: p(x)= a^2x^2

 \rm p(x)=0

 \rm  \implies a^2x^2 = 0

 \rm  \implies (ax)(ax) = 0

 \rm \implies \: x =  - a \:  \: or \: x =  - a

 \rm \implies \: x =  - a, - a

Answered by Anonymous
3

Step-by-step explanation:

 \rm \: p(x)= a^2x^2

 \rm \: To  \: find \:  zero  \: of \:  polynomial \:  p(x)=0

 \rm \: p(x)= a^2x^2

 \rm p(x)=0

 \rm  \implies a^2x^2 = 0

 \rm  \implies (ax)(ax) = 0

 \rm \implies \: x =  - a \:  \: or \: x =  - a

 \rm \implies \: x =  - a, - a

Answered by Anonymous
3

Step-by-step explanation:

 \rm \: p(x)= a^2x^2

 \rm \: To  \: find \:  zero  \: of \:  polynomial \:  p(x)=0

 \rm \: p(x)= a^2x^2

 \rm p(x)=0

 \rm  \implies a^2x^2 = 0

 \rm  \implies (ax)(ax) = 0

 \rm \implies \: x =  - a \:  \: or \: x =  - a

 \rm \implies \: x =  - a, - a

Similar questions