Math, asked by ashutosh158, 1 year ago

find zeros of quadratic polynomial root 3 x square - 8 x + 4 root 3

Answers

Answered by 9015
1
https://qph.ec.quoracdn.net/main-qimg-bbc81f84bfd51bdc6f1571ab15e06866-c
Answered by aman190k
5
Hey herr is your answer
______________________

given polynomial p(x) :

 \sqrt{3} {x}^{2}   - 8x + 4 \sqrt{3}
let p(x) = 0
then,
 \sqrt{3 } {x}^{2}  - 8x + 4 \sqrt{3} = 0 \\  \\    \sqrt{3 } {x}^{2}  - 6x - 2x + 4 \sqrt{3} = 0 \\  \\  \sqrt{3} x(x - 2 \sqrt{3} ) - 2(x - 2 \sqrt{3} ) = 0 \\  \\   ( \sqrt{3} x - 2)(x - 2 \sqrt{3} ) = 0 \\  \\  ( \sqrt{3} x - 2) = 0 \:  \: and \:  \: (x - 2 \sqrt{3} ) = 0 \\  \\ x =  \frac{2}{ \sqrt{3} } \:  \: and \:  \: 2 \sqrt{3} \\  \\  x =    \frac{2 \sqrt{3} }{3} \:  \:  and \:  \: 2 \sqrt{3}
________________________

Hope it may helpful to you
plzz mark me as brainlist.
Similar questions