Math, asked by kvym, 7 months ago

Find zeros of the quadratic polynomial Root3x^2-8x+4root3
.
.
Fake answers will be reported
.
.
Only fair and real answers
The Question is also right

Answers

Answered by sonisiddharth751
31

Answer:

\Large\sf\underline\red{Question:-} \\ \\  \sf \: find \: the \: root \: of \: quadratic \: \\  \sf \: equation \::-  \sqrt{3}  {x}^{2}   - 8x +  \sqrt{3} \\  \\  \\  \Large\sf\underline\red{answer} \\  \\ \sf\blue{ \: x = 2 \sqrt{3} \:  \:  \: , \: x =  \frac{2}{ \sqrt{3} }  } \\  \\  \\ \Large\sf\underline\red{Solution:-} \\  \\\sf \sqrt{3}  {x}^{2}   - 8x +  \sqrt{3} = 0 \\  \\→\sf  \sqrt{3}  {x}^{2}  - (6 + 2) + 4 \sqrt{3}  = 0 \\  \\→ \:  \:  \:  \:  \sf \sqrt{3}  {x}^{2}  - 6x - x +  \sqrt{3}  = 0 \\  \\→ \sf   \sqrt{3} x(x - 2 \sqrt{3} ) - 2(x - 2 \sqrt{3} ) =0  \\  \\→ \:  \:  \: \sf (x - 2 \sqrt{3} )( \sqrt{3} x - 2) = 0 \\  \\→ \:  \:  \:  \:  \sf x  - 2 \sqrt{3}  = 0 \\  \\\sf x = 2 \sqrt{3}  \\  \\ \sf \: \blue{or }\\  \\→ \:  \:  \:  \sf \sqrt{3} x - 2 = 0 \\  \\\sf x =  \frac{2}{ \sqrt{3} }

Similar questions