Math, asked by Vatsal2405, 7 months ago

find zeros : xx^{2} +2\sqrt{2}-6

Answers

Answered by ItzMysticalBoy
28

Correct Question :-

  • Find zeros of quadratic polynomial \sf{x ^2 + 2\sqrt{ 2x} - 6}.

Given :

  • Quadratic polynomial :\sf{x ^2 + 2\sqrt{ 2x} - 6}.

To Find :

  • The zeros .

Solution :-

: \implies \sf \: x ^{2} + 2 \sqrt{2} x - 6 = 0

: \implies \sf \: x ^{2} + 3 \sqrt{2} x - \sqrt{2x} - 6 = 0

: \implies \sf x \bigg(x + 3 \sqrt{2} \bigg) - \sqrt{2} \bigg(x + 3 \sqrt{2} \bigg) = 0

: \implies  \sf \bigg(x - \sqrt{2} \bigg) \bigg(x + 3 \sqrt{2} \bigg) = 0

: \implies  \sf x - \sqrt{2} = 0 \: or \: x + 3 \sqrt{2} = 0

: \implies  \sf x = 0 + \sqrt{2} \: or \: x = 0 - 3 \sqrt{2}

: \implies \underline{\boxed{ \sf x = \sqrt{2} \: , \: x \: = - 3 \sqrt{2} }}

\therefore\underline  \pink{ \sf{ Zeros  \: are \: \sqrt{2} \: and \: - 3 \sqrt{2} .}}

Answered by ItzDeadDeal
17

☃️Correct Question :-

Find the zeroes of polynomial :-

\large\sf{ {x}^{2} + 2 \sqrt{2} x - 6}x

☃️Solution :-

As per Question,

We are given with an expression and we have to find its zeroes.

So, Solution :-

\implies \: \sf{ {x}^{2} + 2 \sqrt{2} x - 6}

</p><p>\implies\sf{ {x}^{2} + 3 \sqrt{2} x - \sqrt{2} x - 6}

\implies\sf{x(x + 3 \sqrt{2} ) - \sqrt{2} (x + 3 \sqrt{2} )}

\implies\sf{(x - \sqrt{2}) ( x + 3 \sqrt{2} )}

Now, Its Zeroes :-

\begin{gathered}(1) \sf{\: x - \sqrt{2} = 0} \\ \\ \implies\boxed{\bf\red{ \: x \: = \: \sqrt{2} }}\end{gathered} </p><p></p><p>

 \pink{\begin{gathered}(2) \sf{\: x + 3 \sqrt{2} = 0} \\ \\ \implies\boxed{\bf\pink{x = -3 \sqrt{2} }}\end{gathered}}</p><p>

Similar questions