findp(0),p(1) and p(2) if p(t)=2+t+2t^2-t^3
Answers
Step-by-step explanation:
p(t)=2+t+2(t^2)-t^3
p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0)
p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2
p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3)
p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3) =2+1+2-1
p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3) =2+1+2-1 =4
p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3) =2+1+2-1 =4p(2)=2+2+2(2^2)-2^3
p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3) =2+1+2-1 =4p(2)=2+2+2(2^2)-2^3 =4+8-8
p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3) =2+1+2-1 =4p(2)=2+2+2(2^2)-2^3 =4+8-8 =4