Math, asked by khushbookatariya, 11 months ago

findp(0),p(1) and p(2) if p(t)=2+t+2t^2-t^3​

Answers

Answered by nanuka
2

Step-by-step explanation:

p(t)=2+t+2(t^2)-t^3

p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0)

p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2

p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3)

p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3) =2+1+2-1

p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3) =2+1+2-1 =4

p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3) =2+1+2-1 =4p(2)=2+2+2(2^2)-2^3

p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3) =2+1+2-1 =4p(2)=2+2+2(2^2)-2^3 =4+8-8

p(t)=2+t+2(t^2)-t^3p(0)=2+(0)+2(0)+(0) =2p(1)=2+(1)+2(1^2)-(1^3) =2+1+2-1 =4p(2)=2+2+2(2^2)-2^3 =4+8-8 =4


khushbookatariya: its really correct....
nanuka: thanks
nanuka: plz follow me
Similar questions