finds remainder ,when x³+3x²-1 is divided by x
Answers
Answered by
1
Answer:
x+1=0
x+1=0x=−1
x+1=0x=−1p(x)=x3+3x2−3x−1p(−1)
x+1=0x=−1p(x)=x3+3x2−3x−1p(−1)=(−1)3+3(−1)2−3(−1)−1
x+1=0x=−1p(x)=x3+3x2−3x−1p(−1)=(−1)3+3(−1)2−3(−1)−1=−1+3(1)+3−1
x+1=0x=−1p(x)=x3+3x2−3x−1p(−1)=(−1)3+3(−1)2−3(−1)−1=−1+3(1)+3−1=−1+3+3−1
x+1=0x=−1p(x)=x3+3x2−3x−1p(−1)=(−1)3+3(−1)2−3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2
x+1=0x=−1p(x)=x3+3x2−3x−1p(−1)=(−1)3+3(−1)2−3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2=4
x+1=0x=−1p(x)=x3+3x2−3x−1p(−1)=(−1)3+3(−1)2−3(−1)−1=−1+3(1)+3−1=−1+3+3−1=6−2=4Thus remainder is 4
Answered by
0
Answer:
please mark me as Brainliest please
Attachments:
Similar questions