Math, asked by softWaREUSEr, 11 months ago

findthe area of equilatteral tringlle with side 2root3 cm by use herons formula​

Answers

Answered by kaushik05
48

 \huge \green{ \mathfrak{solution}}

Given:

side = 23cm

To find : Area of equilateral triangle by using Heron's formula .

Heron's formula :

  \boxed{\bold \red{{\sqrt{s(s - a)(s - b)(s - c)} }}}

where S is semiperimeter =

 \boxed{ \blue{  \frac{a + b + c}{2} }}

First find: S

All sides are same because it's an equilateral triangle

 \implies  \:  \frac{2 \sqrt{3} + 2 \sqrt{3}  + 2 \sqrt{ 3}  }{2}  \\  \\   \implies \frac{6 \sqrt{3} }{2}  \\  \\  \implies \: 3 \sqrt{3} cm

Now ,

Area

 \rightarrow \:   \sqrt{3 \sqrt{3} (3 \sqrt{3} - 2 \sqrt{3})(3 \sqrt{3}  - 2 \sqrt{3} )(3 \sqrt{3} - 2 \sqrt{3}    }  \\  \\  \rightarrow \:  \sqrt{3 \sqrt{3} ( \sqrt{3} )( \sqrt{3})( \sqrt{3} ) }  \\  \\  \rightarrow \:  \sqrt{3 \sqrt{3} (3 \sqrt{3} )}  \\  \\  \rightarrow \:  \sqrt{ {(3 \sqrt{3} })^{2} }  \\  \\  \rightarrow \: 3 \sqrt{3}

Hence the area is

  \red{\boxed{ \boxed{ \purple{ \: 3 \sqrt{3}  {cm}^{2}} }}}

Similar questions