Math, asked by hindilearn5495, 11 months ago

Fine equality equality polynomial the sum and product of whose zeros are - 3 and 2 respectively

Answers

Answered by amitkumar44481
1

AnsWer

 \tt{ k( {x}^{2}   + 3x + 2.)} \\  \\

Explanation

  \:  \: \tt{  Sum  \: of  \: zeros  \: -3.} \\

 \:  \:  \tt{Product  \: of \:  zeros \:  2.}

It's means,

 \\  \:  \:  \:  \alpha  +  \beta  =  - 3. \\   \:  \:  \: \alpha  \times  \beta  = 2.

  \:  \:  \: \tt{Let's \:  Sum \:  of  \: zeros  \: be  \: S  \: and } \\   \:  \:  \: \tt{product  \: of \:  zeros  \: be \:  P.}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{K( {x}^{2}  - sx + p )}

Here, k is constant term.

 \leadsto   \tt{K( {x}^{2}  - ( - 3)x +( 2) )}

 \leadsto   \tt{K( {x}^{2}   + 3x + 2. )} \\  \\

Some information

 \tt{Sum \:  of  \: zeros  =  \alpha  +  \beta  =  \frac{ - b}{a} }

  \\ \tt{Produc t  \: of \:  zeros  =  \alpha  \times  \beta  =  \frac{c}{a} }

Similar questions